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Genomics has been defined as the comprehensive study of
whole sets of genes, gene products, and their interactions
as opposed to the study of single genes or proteins.
Microarray technology is one of many novel tools that are
allowing global and high-throughput analysis of genes and
gene products. In addition to an introduction on under-
lying principles, the current review focuses on the use of
both complementary DNA and oligodeoxynucleotide
microarrays in gene expression analysis. Genome-wide
experiments generate a massive amount of data points that
require systematic methods of analysis to extract biologi-
cally useful information. Accordingly, the current educa-
tional communication discusses different methods of data
analysis, including supervised and unsupervised clustering
algorithms. Illustrative clinical examples show clinical ap-
plications, including (1) identification of candidate genes
or pathological pathways (ie, elucidation of pathogenesis);
(2) identification of “new” molecular classes of diseases

ALL = acute lymphocytic leukemia; AML = acute myeloid
leukemia; bp = base pair; cDNA = complementary DNA;
CLL = chronic lymphocytic leukemia; cRNA = complemen-
tary RNA; DLBCL = diffuse large B-cell lymphoma; EST =
expressed sequence tag; FL = follicular lymphoma; mRNA =
messenger RNA; PCR = polymerase chain reaction; SOM =
self-organizing map

that may be relevant in disease reclassification, prognosti-
cation, and treatment selection (ie, class discovery); and (3)
use of expression profiles of known disease classes to pre-
dict diagnosis and classification of unknown samples (ie,
class prediction). The current review should serve as an
introduction to the subject for clinician investigators, phy-
sicians and medical scientists in training, practicing clini-
cians, and other students of medicine.
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Microarray analysis embodies the essence of genomics
by allowing simultaneous (in a single assay) study of

many genes and gene products.1 A microarray system may
be applied to global analysis of genomic DNA,2,3 expressed
DNA (RNA),4,5 or translated DNA (protein).6-10 All this is
made possible by the current availability of a powerful set
of technologies that includes miniaturized interrogating (ie,
probe linked) of solid substrates and computer-assisted
scanning and imaging devices.11 Robust methods of com-
putational analysis are being developed to interpret the
large amount of data generated from microarray experi-
ments and to extract biologically useful information.12-14

In DNA microarray analysis, an altered gene or bio-
chemical pathway associated with a particular disease may
be revealed by the identification of a consistently up-regu-
lated or down-regulated gene across a cohort of patients
with the same disease. Once identified, the aberrant func-

tional pathway may be targeted in the development of
novel therapeutics (drug discovery).15 Similarly, analyzing
gene expression patterns across individual patients with the
“same” disease may reveal molecular-level differences that
may allow refinement of current disease classification,
prognostication, and treatment selection.5,16-19 Other appli-
cations of DNA microarray analysis include gene identifi-
cation,20,21 screening for DNA mutations22,23 or polymor-
phisms,24 and comparative genomic hybridization.25 The
current article focuses on gene expression profiling of dis-
eased tissue as a prelude toward gaining pathogenetic in-
sight into the disease and identifying molecularly distinct
classes of individual disease categories. The methods de-
scribed in this communication are based on a review of the
literature.

BASICS IN DNA MICROARRAY TECHNOLOGY
A microarray or macroarray is an orderly arrangement (ie,
the coordinates are known) of a usually rectangular grid of
“spots” (cells, features). In DNA microarray analysis, data
are usually presented by columns and rows; columns repre-
sent different samples, patients, or experiments, and rows
represent genes (Figure 1).26 Therefore, a cell (feature)
represents the quantification of a gene expression for a
given gene in a given sample.26 Thousands of microarray
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Figure 1. Three levels of microarray gene expression data pro-
cessing. The spots on the actual microarray are imaged after
DNA-DNA hybridization procedures, and the raw data are sub-
sequently quantified for spot intensity and processed onto a quan-
tification matrix with rows (representing genes) and columns
(representing samples, patients, or experiments). Reprinted with
permission from Brazma et al.26

spots may be ordered by printing small fragments of DNA
(probes) onto a small solid matrix (chemically coated glass,
nylon membrane, silicon) using modern technology. The
term chip is arbitrarily used for solid substrate units with
small dimensions (usually <4 × 4 cm). The number of spots
on a single microarray chip depends on the size of the chip
and the spotting technique used. Each spot on a DNA
microarray is less than 250 µm in diameter (compared with
>300 µm in a macroarray) and carries millions of copies of
a specific probe.

The DNA molecule that is tethered (embedded, immo-
bilized) to each spot on a microarray chip is called a probe.
A coating of polylysine or silane on a glass substrate facili-
tates adhesion of the DNA probe. The test samples (usually
complementary DNA [cDNA] representing messenger
RNA [mRNA] from study samples) are called targets. The
interaction (hybridization by base pairing) between probes
and targets defines the experiment.27

Various sources of DNA may be used as probes. Al-
though genomic DNA may be an acceptable source in
prokaryotes, the presence of introns and intergenic regions
in eukaryotes makes genomic DNA difficult to use in
higher animals. Regardless, the choice of probes also de-
pends on the objective of the experiment. For the study of
single nucleotide polymorphisms, for example, the use of
genomic DNA is essential. On the other hand, microarray
probes for the study of gene expression patterns are usually
prepared from expressed DNA sequences (cDNA clones,
expressed sequence tags [ESTs]). To ensure genome-
wide representation, the information to prepare probes is
derived from comprehensive public databases (UniGene,

GenBank, dbEST). For human experiments, the UniGene
database is preferred because of a low redundancy of repre-
sentation and its superb organization, which allows system-
atic evaluation of the results of the experiment by provid-
ing full information on the expressed genes.

At present, there are 2 distinct methods of spotting DNA
probes on chips. In one, polymerase chain reaction (PCR)–
amplified ESTs (or whole cDNA clones extracted from
plasmid-containing bacterial cultures) (500-5000 base
pairs [bp] long) are deposited (nanoliter quantities per
spot) on the microarray spots by using high-speed robotics
(Figure 2).28 This is the method used in comparative cDNA
microarrays. In the second method, the probes are oligo-
deoxynucleotide sequences (20-50 bp long) that are syn-
thesized in situ on the chip itself. The aforementioned
databases are used to obtain the information on the gene-
specific sequences that are used to construct the oligo-
nucleotide probes. This is the method used in oligonucle-
otide microarrays (oligo chips), which is described in detail
in the next section.

PHOTOLITHOGRAPHY AND THE
OLIGODEOXYNUCLEOTIDE CHIP
Affymetrix Corporation (Santa Clara, Calif) produces a
high-density oligo chip (GeneChip) that is less than 1.5 ×
1.5 cm and carries several hundred thousand spots, repre-
senting more than 15,000 human genes. The probes are
synthesized in situ with use of photolithography and DNA
chemical analysis. The process of photolithography re-
quires a light source and a filmlike apparatus (a mask) that
transmits light in a pattern that follows a specific design.
This technology is borrowed from the computer chip indus-
try. When a computer chip is being made, the mask is first
prepared in a larger scale by designing a circuitry pattern
on an opaque chromium film that rests on a glass. A UV
beam of light is then transmitted through the mask, and the
passing light is focused onto a photosensitive polymer
(photoresist) that rests on a silicon wafer.29 Thus, the origi-
nal pattern of the mask is captured and replicated in a
miniaturized form on the silicon by removing the light-
exposed parts of the photoresist.

In making the oligo chip, a glass slide coated first with a
covalent linker molecule that is covered by a photolabile
protector is selectively activated at different spots on the
chip by UV light shining through a mask with a
predesigned pattern (Figure 3).30 A set of photomasks with
different pattern designs is used to expose specific spots for
specific nucleotide attachments. The base nucleotides are
themselves photoprotected (photosensitive hydroxyl-pro-
tected deoxynucleotides that are tethered at the 5′ end and
ready to be light activated at the 3′ end) for subsequent
light-directed, mask-determined nucleotide attachment
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Figure 2. Complementary DNA microarray experiment. See text for detailed descrip-
tion. PCR = polymerase chain reaction. Reprinted with permission from Duggan et al.28

Figure 3. Light-directed oligonucleotide synthesis on a glass
slide. See text for detailed description. Reprinted with permission
from Lipshutz et al.30

(Figure 3). The whole process of selective light activation
using different photomasks and coupling is repeated to lay
nucleotides 1 at a time on a growing chain (in situ oligo-
nucleotide synthesis).30 Therefore, such chips are called
oligo chips, in comparison to cDNA chips in which the
probes are prepared separately by a PCR amplification
process of ESTs or cDNA clones (cDNA chips).

The Affymetrix Hum6000 chip (1 type of oligo chip) is
1.28 × 1.28 cm and contains approximately 65,000 spots
(features), each spot measuring 24 × 24 µm and containing
approximately 10 million 25 mer oligodeoxynucleotide
probes. A set of 4 such chips contains approximately 6817
genes or ESTs. One gene or EST is represented by a probe
set that is made up of 20 different spots (features) with
probes that differ in their sequences but are all complemen-
tary to different domains of the same specific target gene or
EST (ie, the 20 different probes represent different seg-
ments of the same gene or EST) (Figure 4).30 This is impor-
tant because the oligo probes are small enough to cross-
hybridize, and the representation of a gene with multiple
oligomers (ie, the probe set) increases the accuracy of gene
detection and quantification. Furthermore, each feature in a
probe set is accompanied by a neighbor feature (making a
pair), with probes having a single nucleotide mismatch at
the center distinguishing the members of each pair (the so-
called perfect match and mismatch features) (Figure 4).30 In
other words, there are 20 feature pairs per gene or EST.
This multiplication of features per gene or EST helps in
internal quality control of the hybridization process de-
scribed in the next section.

MICROARRAY EXPERIMENT FOR
GENE EXPRESSION ANALYSIS
In a DNA microarray experiment, the basic requirements
are a microarray chip and an RNA sample. Either total
RNA or enriched mRNA samples may be used. However,
only 3% of total RNA is represented by mRNA, and there-
fore extracting mRNA from patient samples in an amount
that is adequate for microarray analysis (approximately 5-
100 µg per sample) may be difficult. In general, cDNA
microarray experiments require more than 50 µg of total
RNA from target tissues, whereas 5 µg of RNA may be
adequate for an oligo chip microarray experiment. Re-
cently described target amplification methods that use in
vitro transcription (sample RNA–cDNA–complementary
RNA [cRNA]) may allow the use of even smaller amounts
of test sample (approximately 1-50 ng of total RNA).11



Primer on Medical Genomics Part III Mayo Clin Proc, September 2002, Vol 77930

In cDNA microarray, a control sample is usually re-
quired for simultaneous analysis with the test sample
(ie, 2-sample analysis on a single chip). Thus, gene
expression is estimated by comparing the amount of
mRNA content in 2 different cell populations (a test
sample vs a control sample), and the measurement is
given as a ratio. In contrast, in oligo chip analysis, the
usual procedure is to analyze the test sample on 1 oligo
chip and the control or reference sample on another oligo
chip. In other words, the 2 samples on 1 cDNA chip can
be viewed as comparable to 2 samples on 2 oligo chips.
Therefore, interpretation of gene expression with oligo
chips requires comparison of levels from the test sample
to those of the control or reference sample. Regardless,
both methods of a microarray experiment (cDNA micro-
array vs oligo chips) consist of several steps, including (1)
target preparation (extracting nucleic acids from biologi-
cal samples and labeling them with either fluorescent
dyes for glass array or radioactive isotopes for nylon
filters), (2) hybridization (incubation of the labeled tar-
gets with cDNA or oligodeoxynucleotide probes on the
surface of the chip), (3) scanning (computer-assisted
reading of signal intensity that is emitted from labeled
targets that are hybridized to probes on the chip surface;
laser scanner for fluorescence or PhosphorImager for ra-
dioactive isotopes), and (4) computational analysis to ex-
tract biologically useful information from the vast quan-
tity of data generated.

Figure 4. Gene expression monitoring with oligonucleotide arrays. A, Single 1.28 × 1.28-cm array containing probe sets for approximately
40,000 human genes and expressed sequence tags (ESTs). This array contains features (cells) smaller than 22 × 22 µm and only 4 probe
pairs per gene or EST. B, Expression probe and array design. Oligonucleotide probes are chosen based on uniqueness criteria and
composition design rules. For eukaryotic organisms, probes are chosen typically from the 3′ end of the gene or transcript, near the poly-A
tail, to reduce problems that may arise from the use of partially degraded messenger RNA (mRNA). The use of perfect match minus
mismatch differences averaged across a set of probes greatly reduces the contribution of background and cross-hybridization and increases
the quantitative accuracy and reproducibility for the measurements. See text for further discussion. Reprinted with permission from
Lipshutz et al.30

Target Preparation: cDNA Microarray vs Oligo Chips
In cDNA microarray experiments, the initial step is to

synthesize cDNA (by reverse transcription) from total
RNA or mRNA extracted from both the test and the refer-
ence samples in the presence of nucleotides that are dif-
ferentially labeled (test vs control sample) with reporter
molecules (fluorochromes for chip arrays and radioactive
isotopes for membrane arrays) (Figure 5).31 The labeled
cDNAs therefore represent portions or complete seg-
ments of the original mRNA or total RNA from the
samples and are comparatively more stable. This method
requires relatively more RNA per sample (approximately
100 µg).

Differential labeling is not necessary for microarray
experiments using oligo chips. Sample mRNA (approxi-
mately 5 µg) is first reverse transcribed into single-
stranded cDNA in the absence of labeled nucleotides. The
single-stranded cDNA is then converted to a double-
stranded cDNA that is in turn transcribed to cRNA (ie, in
vitro transcription) in the presence of biotinylated nucle-
otides. This additional step (compared with cDNA
microarray) amplifies the target molecules (original
mRNA) by approximately 50-fold.31

Hybridization: cDNA Microarray vs Oligo Chips
In cDNA microarray, the test and reference cDNA

samples, which are differentially labeled with fluoro-
chromes, are mixed in equal amounts and incubated with a
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Figure 5. Comparison of the steps in complementary DNA (cDNA) microarray experiment vs oligo-
nucleotide chip analysis. See text for a detailed explanation. cRNA = complementary RNA; mRNA =
messenger RNA; PCR = polymerase chain reaction. Reprinted from Schulze and Downward31 with
permission from MacMillan Magazines, Ltd.

microarray slide for hybridization to occur (Figure 2).28

Each spot on the microarray chip contains enough (mil-
lions) DNA copies to allow probe hybridization from both
samples without interference. The abundance of specific
targets (and therefore the amount of mRNA from the orig-
inal samples) in the test vs the control sample will dictate
the amount of binding to specific probes, and the dif-
ference in target (mRNA) content between test and con-
trol samples at a specific spot will be determined by the
difference in the content of the corresponding reporter
molecules.

In oligo chip microarray experiments, the biotinylated
cRNA is first hybridized to the oligodeoxynucleotide
probes on the glass slide, followed by binding to an avidin-
conjugated fluorophore. The abundance of the target mol-
ecule is estimated by measuring raw intensities of the
fluorescence emitted by the linked reporter molecules
(Figure 5).31

Scanning: cDNA Microarray vs Oligo Chips
After hybridization is completed, fluorescence from ar-

ray spots with successful probe-target linkage is detected
and digitally imaged. A laser beam is used to excite the
fluorescent markers linked to the hybridized target mol-
ecules, and the degree of fluorescence correlates with the
abundance of target molecules at a specific spot. Fluores-
cent emission is monitored by a scanner, which also pro-
cesses the image. The raw intensity of fluorescence from
each spot is quantified by either a charge-coupled device
camera or a photomultiplier tube, which converts light
energy into an electrical signal. High-resolution imaging is
optimized by use of confocal microscopy. The recorded
intensity is saved as a tagged image file format (the inten-
sity of a given pixel is proportional to the amount of signal
coming from the corresponding point on the glass chip).

In cDNA microarray, the test sample is labeled with the
fluorochrome Cy3 (rhodamine, with a fluorescence emis-
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sion wavelength of 565 nm) and the control sample with a
different fluorochrome, Cy5 (fluorescein, with an emission
wavelength of 670 nm). Such double labeling allows as-
sessment of expression in the test sample in relation to
expression in the control sample (Figure 5). Independent
images (one for Cy3 and the other for Cy5), using the
respective excitation wavelengths for generating fluores-
cence with characteristic emission wavelengths, are then
generated and subsequently digitally integrated to produce
a composite image that allows measurement of the ratio of
the target molecules in the 2 samples (test and control).
These ratios can be presented as either Microsoft Excel
files or pseudocolor images that assign red for genes that
are expressed higher in the test sample than that of the
control sample and green for genes that are expressed lower
in the test sample compared with those in the control
sample (Figure 6).32

In the case of oligo chips, the absolute intensity of
fluorescence from each spot on the glass chip constitutes
the raw data that are subject to further analysis. Scanning
devices are often equipped with imaging software that
captures spot-specific signal intensity and adjusts for both
background intensity and variance of pixel intensity within
a specific spot. Additional measures to ensure data quality
include the use of replicate pairs of genes in a single array
or replicate arrays.33,34

Normalization: cDNA Microarray vs Oligo Chips
Raw signal intensity, either from cDNA or oligo chip,

must be adjusted to a common standard (normalized) to
correct for differences in overall array intensity that include
background noise as well as differences in efficiency in
detection and data acquisition. In other words, individual
chips from many patients or experiments must be compa-
rable in other aspects before a legitimate comparison of
gene expression is made. After normalization, the raw gene
expression levels are presented as an expression ratio of
test vs control sample, or the gene expression profiles from
several samples may be compared with a clustering algo-
rithm. Ratios are typically log-transformed to simplify pre-
sentation of bidirectional fold differences (ie, produce a
normal distribution).13

There are several methods of normalization. Back-
ground noise subtraction is uniformly applied to all meth-
ods.30 In addition, some investigators assume minimal cell-
to-cell variation in the expression of housekeeping genes,
and therefore the spot intensities in each array are rescaled
accordingly.35 Another method rescales spot intensities
based on the average spot intensity of either the entire chip
or a set of probes representing the same gene.30,33 This
particular method assumes that the total number of targets
that hybridize to probes is the same for both the test and the
reference sample, which, therefore, should have the same

Figure 6. Microarray images in complementary DNA microarray experiment. Refer-
ence and test samples are differentially labeled (green and red), and an integrated
composite image displays the relative abundance of targets at specific spots displayed
by pseudocolor images. Reprinted with permission from Brockman and Tamminga.32
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total integrated intensity. Alternatively, each array experi-
ment may be coupled with another experiment with a com-
mon reference sample to act as a control for normalization
purposes.

In GeneChip, each spot (containing a perfect match
probe) is accompanied by another neighboring cell that
contains a mismatch probe (an oligonucleotide probe that
differs by 1 bp at a central position). The difference in spot
intensity between the 2 samples is used to account for
background noise and nonspecific cross-hybridization
(Figure 4).30

MICROARRAY DATA ANALYSIS
After normalization, spot intensities or ratios are converted
to a table with a numerical value that is suitable for further
statistical analysis. The table, also called a matrix, is made
up of rows (representing genes) and columns (representing
patients or experiments). Therefore, each cell represents an
expression value (absolute spot intensity or ratio) that can
be color coded as red (relatively overexpressed) or green
(relatively underexpressed). As is, these raw data, whether
in the form of numbers or colors, are completely unintelli-
gible (Figure 1).26 The primary purpose of a microarray data
analysis, based on various statistical techniques, is to extract
order based on similarities and differences in expression.

The first and most important step in microarray data
analysis is to define the purpose of the exercise. Current use
of microarray data analysis in medical genomics has fo-
cused on 3 separate objectives: (1) identification of candi-
date genes or pathological pathways (ie, elucidation of
pathogenesis); (2) identification of “new” molecular
classes of diseases that may be relevant in disease reclassi-
fication, prognostication, and treatment selection (ie, class
discovery); and (3) use of expression profiles of known
disease classes to predict diagnosis and classification of
unknown samples (ie, class prediction).

Searching for Candidate Genes
The gene expression profile of normal and disease tissue

can be compared to identify genes that are differentially
displayed. The information regarding differential display is
obtained from a single microarray in the case of cDNA
microarray analysis as long as the reference sample used
represents the normal tissue counterpart of the disease tis-
sue under study.

With oligo chips, raw data from 2 microarrays (one
from diseased tissue and another from normal tissue) are
compared to identify genes that are differentially ex-
pressed. Usually, the initial step involves some degree of
data filtration. First, a threshold pixel intensity (usually
1500-3000 pixels) is set, based on background intensities
and factors that relate to other experimental conditions, and

genes that show expression values below this threshold
level are discarded. This step assumes that the genes of
interest are adequately expressed at least in some patients
or reference samples. Next, either an arbitrary fold-based
difference (>2-, 5-, or 10-fold difference in spot intensity)
or a statistical test (eg, t or F test) is used to select genes that
show statistically significant variation in expression among
patients or experiments. The t test measures the difference
in mean expression values between 2 samples and allows
the identification of genes with a significant difference.
One can also use a paired t test for samples from the same
origin (eg, normal and diseased tissue from the same pa-
tient) or a nonparametric test (eg, Mann-Whitney test) if
one assumes a non-Gaussian distribution of data. The dif-
ference in mean expression values among 3 or more
samples is measured by the F test (Kruskall-Wallis test for
nonparametric data).

Subsequently, genes that show little variation in expres-
sion across patient samples or experiments are discarded.
The remaining genes become the genes of interest for
further analysis that includes confirmation of overex-
pression by real-time PCR. The next step is to group (clus-
ter) the selected genes of interest based on similarity of
expression. Such grouping may identify genes that may be
coregulated and therefore functionally related. Such infor-
mation may lead to elucidation of pathologic pathways and
drug targets.

Defining Gene Expression Profiles to Facilitate
Class Discovery and Class Prediction

The clustering of similarly expressed genes may gener-
ate a pattern (profile) that may be useful in the separation of
distinct phenotypes, classes, or stages of disease.14 Both
gene and sample (patients or experiments) clusters are
based on similarity of gene expression.

The underlying principle is for each measure of gene
expression (spot intensity in a matrix cell) to be represented
by an expression vector in an expression space with “n”
dimensions, in which “n” is the number of patients or
experiments.13 This will allow each gene to be represented
by a point in expression space where the geometric coordi-
nates are defined by the expression vectors from each
patient or experiment. Accordingly, the similarity between
2 genes, and therefore 2 points in expression space, is
deduced from their proximity to each other.14,36

One method of measuring the distance between 2 data
points (known as the euclidean metric distance) is to calcu-
late the square root of the sum of the squared differences in
the expression vectors of each patient or experiment [eu-
clidean distance = √ n∑

i = 1
 (x

i 
– y

i
)2, in which “x

i
” and “y

i
”

are the measured expression values for genes X and Y in
experiment “i” and “n” is the number of patients or experi-
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ments].13,36 The euclidean distance metrics are best suited
for data that are normalized for degree of expression de-
spite different absolute levels. Such data transformation
may be unnecessary in an alternative method called the
Pearson coefficient of correlation (r). The latter method
compares genes according to similarity in shape (ie, the
direction in expression) rather than absolute magnitude of
expression. In contrast, euclidean metrics measure the ab-
solute distance between 2 expression vectors (points) in
space. Closely residing genes in the expression space (ie,
genes with similar expression vectors) can then be grouped
(clustered) according to various multivariate statistical
methods.

Several statistical algorithms have been used in generat-
ing patterns (ie, expression profiles) of gene expression
that may be used in identifying coregulated genes and
different disease classes (or sample categories). Such gene
or sample organization (clustering) may be either unsuper-
vised (not based on prior information) or supervised (based
on prior information).37

Unsupervised Cluster Analysis
In unsupervised cluster analysis, the statistical algo-

rithm is not trained to recognize a specific gene expression
pattern from a previously known class of genes or group of
patients (or experiments) that may be used to classify new
members (ie, unknown samples). In other words, unsuper-
vised clustering is designed to discover clusters of similar
genes or similar samples (ie, facilitates class discovery).
Unsupervised clustering may be hierarchical (classification
with nested classes resembling a phylogenic tree) or
nonhierarchical (classification into clusters without speci-
fying the relationship between individual members of a
class). Hierarchical clustering may be agglomerative (a
clustering mechanism that starts from single members and
their relationship with each other and grows into bigger
classes) or divisive (a clustering technique that starts from
grouping all members in 1 class first and subsequently
breaking the class into smaller groups).

Hierarchical Clustering
Hierarchical agglomerative (aggregative) clustering

(not divisive hierarchical clustering) is the most commonly
used clustering method in gene expression analysis. The
particular method starts with identifying a gene pair with
the most similar expression across patients or experiments
(Figure 7).38 The euclidean distance (or alternative distance
metrics) between 2 genes in expression space is used for
this purpose, and the identified gene pair undergoes fusion
(with a node connecting the 2 genes), and the composite
expression vector (represented by the mean of the 2 expres-
sion levels) is considered as a single element toward further

similar analyses (Figure 7).38 The process is repeated until
all elements are included in the analysis and a single
dendrogram (a tree) is assembled (Figure 8).13,14,39 The
result is a single hierarchical tree (a dendrogram) in which
intercluster distance (branch length of the dendrogram)
directly correlates with dissimilarity in gene expression.
Of note, the distance between 2 clusters may be calculated
by several other previously reported methods.13 Also,
member positions in neighboring clusters are not neces-
sarily fixed and may vary depending on other alternative
permutations.

Similarly expressed genes are then ordered next to each
other and visualized with color-coded rows (red for
overexpressed and green for underexpressed genes) (Fig-
ure 8). Such hierarchical clustering can also be applied to
samples instead of genes (ie, sample clustering) based on
similarity of expression across different genes (ie, 2-di-
mensional clustering; Figure 9).40 Therefore, hierarchical
agglomerative clustering results in organizing genes into
functional categories12 as well as in the classification of
disease types and subtypes.5 Such an approach may lead to
the revelation of clinically important and previously un-
known molecular classes within 1 disease group (ie, class
discovery).5

In divisive hierarchical clustering, the opposite of the
aggregative method is performed. The entire set of genes or
samples is considered a single cluster and is broken down
first into 2 groups, then into 4, and so forth until all ele-
ments have been separated into single elements (Figure
7).38 The process involves random selection of defined
vectors for the initial clusters and assignment of genes to
specific clusters based on their similarity to the reference
vectors. With each assigned gene, the reference vectors are
redefined to establish a new average, thus ensuring similar-
ity of genes in a given cluster. The result is a binary tree
with information similar to that obtained by aggregative
clustering.41,42

Nonhierarchical (Partitional) Clustering Algorithms
Partitional techniques require predetermination of the

total number of clusters (classes) and amass data elements
into these predetermined clusters rather than organize the
genes or samples into a dendrogram. One such example is
k-means clustering.13,43 First, all members (genes in this
case) are randomly assigned to one of a fixed number of
classes. Second, an average value (expression vector) is
calculated for each cluster and is used to calculate
intercluster distance. Third, individual members are moved
from cluster to cluster to group closely related members
together (ie, minimize the overall within-cluster disper-
sion). Thus, k-means clustering is a divisive and unsuper-
vised clustering algorithm.
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Figure 7. Aggregative and divisive methods of cluster analysis. The color codes represent
the measured fluorescence ratios. Genes with unchanged expression are colored black.
Red represents relatively high and green represents low gene expression. The intensity of
the colors reflects different degrees of expression. The figure shows the expression levels
of 5 different genes (genes 1 through 5) under 5 different conditions (c

1
-c

5
). In the

aggregative method of cluster analysis, genes with similar expression (eg, genes 4 and 5 or
genes 1 and 2) are fused and subsequently represented by an average row designation. The
opposite is performed in a divisive cluster analysis. See text for a more detailed explana-
tion. Reprinted from Dopazo et al38 with permission from Elsevier Science.

A similar divisive and unsupervised method known as a
self-organizing map (SOM) assigns genes to a predeter-
mined number of classes based on the similarity of their
expression vectors to reference vectors that are previously
defined for each class.44 In SOM, the reference vectors are
recalculated with the assignment of a new member to the
class so that the new reference vector is even more similar
to the expression vector of the new member of the class.
Such adjustment of reference vectors also affects nearby
classes that are accordingly moved to new positions, and
the result is a group of clusters that contain the most similar
genes (or samples) with the least intercluster dispersion
(Figure 10).39 Another unsupervised method of clustering,
principal component analysis, is a mathematical technique
that takes into account redundancy in gene expression
across patients or experiments and thus diminishes the
dimensions of expression space without significant loss of
information.45 Principal component analysis allows opti-
mal visual separation of clusters and works best when
combined with other clustering algorithms, including k-
means clustering or SOM (Figure 11).13

Supervised Cluster Analysis
Unsupervised clustering techniques generate classes in

terms of both genes and samples. In contrast, supervised
statistical algorithms predict classes based on a priori
knowledge. The procedure starts with training a classifica-
tion machine (ie, a specialized statistical algorithm such as
a support vector machine) to recognize specific gene ex-
pression patterns of known gene classes or patient groups
(eg, normal vs diseased tissue, different disease types). The
machine learns to distinguish between members and non-
members of a specific class based on expression data. The
machine then constructs a classifier (discriminator) that
accurately assigns a new member (an unknown sample) to
a predefined class (Figure 12).46 Such a classifier may then
be used in assigning genes to functional classes and dis-
eases into predefined categories that might predict diagno-
sis, stage, prognosis, or appropriate therapy.16,47-49

The following section provides 3 examples that illus-
trate the use of gene expression profiling in clinical medi-
cine, including disease classification and prognostication at
the molecular level.
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Figure 8. Aggregative cluster. Reprinted from Sherlock39 with
permission from Elsevier Science.

ILLUSTRATIVE CLINICAL EXAMPLES
Example 15

Disease.—B-cell non-Hodgkin lymphoma.
Background.—B-cell non-Hodgkin lymphoma is clini-

cally heterogeneous with some variants, including chronic
lymphocytic leukemia (CLL) and follicular lymphoma
(FL), which have an indolent but incurable disease pheno-
type and other variants, including diffuse large B-cell
lymphoma (DLBCL), which has a more aggressive but
sometimes curable disease phenotype. With modern com-
bination chemotherapy, DLBCL has a 5-year relapse-free
survival rate of less than 50%.

Purpose.—To test whether gene expression profiles can
accurately distinguish among previously established B-cell
non-Hodgkin lymphoma classes and reveal additional mo-
lecular classes of DLBCL with different clinical courses
(ie, assist in class discovery).

Methods.—A cDNA microarray analysis was per-
formed by using a special chip (Lymphochip) that con-
tained gene probes that are selected from cDNA libraries
prepared from normal and malignant lymphocytes at dif-
ferent stages of differentiation and activation (a total of
17,856 cDNA clones). Ninety-six mRNA samples were
analyzed, including 62 patient samples (42 DLBCL, 11
CLL, 9 FL) and 34 control samples derived from either
normal lymphocytes or tumor cell lines. The reference
mRNA sample that was mixed with each one of the 96 test
samples was prepared from a pool of mRNA from 9 differ-
ent lymphoma cell lines.

Results.—Based on global similarity in gene expres-
sion patterns, a hierarchical agglomerative clustering al-
gorithm accurately segregated the morphologically rec-
ognized classes of lymphoma (DLBCL vs FL vs CLL)
(Figure 10).5 In addition, restriction of the clustering algo-
rithm to genes that define germinal center B cells revealed
2 distinct gene expression patterns among patients with
DLBCL. This molecular subclassification of DLBCL pro-
vided independent prognostic information. The gene ex-
pression patterns of morphologically different lymphoma
subclasses mimicked those from normal lymphocytes at
different stages of differentiation and activation.40

Conclusion.—Morphologically distinct disease catego-
ries may display equally distinct gene expression profiles.
The establishment of such expression profiles may help in
accurately classifying new cases (class prediction). Simi-
larly, clinically distinct phenotypes of an individual disease
class may be revealed by gene expression profiling (class
discovery). Furthermore, considerable pathogenetic insight
may be obtained by comparing gene expression patterns of
diseased and normal tissue.

Example 216

Disease.—Acute leukemia.
Background.—Acute leukemia is a deadly disease

(10%-20% 5-year survival rate in adults) that can be classi-
fied into acute lymphoid leukemia (ALL) and acute my-
eloid leukemia (AML). Both prognosis and treatment differ
in ALL vs AML.

Purpose.—To test whether gene expression profiles
correlate with morphologically recognized subclasses of
acute leukemia (ie, class discovery) and whether genera-
tion of gene expression profiles from morphologically dis-
tinct ALL and AML cases allows class prediction of un-
known samples.

Methods.—An oligo chip array (Affymetrix) contain-
ing 6817 genes was used to array total RNA from bone
marrow samples of 27 cases of ALL (all children) and 11
cases of AML (all adults). For the purpose of class discov-
ery, a nonhierarchical clustering technique (SOM) was
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Figure 9. Hierarchical clustering schema depicting relationships between 96 samples of normal and
malignant lymphocytes. The dendrogram on the left lists the samples studied and provides a measure
of the relatedness of gene expression in each sample. The dendrogram is color coded according to the
category of messenger RNA sample studied (see upper right key). Of note, the dendrogram along the
top of the color map is the same as the one along the side but rotated and inverted. CLL = chronic
lymphocytic lymphoma; DLBCL = diffuse large B-cell lymphoma; FL = follicular lymphoma; Nl =
normal. Reprinted from Alizadeh et al40 with permission from John Wiley & Sons, Ltd.

used with a priori specification of either 2 or 4 clusters and
application of data filtration that discarded genes that
showed less than a 5-fold difference in expression among
the test samples. For the purpose of class prediction, spe-
cific genes (1100 genes) that are differentially expressed in
ALL vs AML were identified by a modified clustering
technique called neighborhood analysis. Of these, the 50
stronger discriminators (informative genes) were used to
predict the class of an unknown sample based on the simi-
larity in gene expression (of the informative genes) of the
new sample to those of the ALL or AML classes. In other
words, the expression level of a gene from the new sample

is given a value that predicts ALL or AML class categori-
zation, and the total of all such values from all the informa-
tive genes is used to cast the final vote (weighted-voting
algorithm).

Results.—The unsupervised and nonhierarchical SOM
technique generated either 2 (ALL vs AML) or 3 (AML vs
B-cell ALL vs T-cell ALL) distinct expression patterns that
highly correlated with morphologically and immunophe-
notypically distinct acute leukemia categories. The class
prediction based on the distinct expression profiles gener-
ated from known cases was successfully applied to 34 new
leukemia samples, with 29 correctly predicted.
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Conclusion.—Both class discovery and class prediction
of disease categories may be possible with use of gene
expression patterns, and such application may complement
disease diagnosis and classification. Of note, the investiga-
tors used the unsupervised and nonhierarchical (SOM)
technique that accurately segregated cases of AML from
cases of ALL. They also used a supervised learning classi-
fication method based on known classes to develop a clas-
sifier (molecular signature) for class prediction. A similar
approach was used in a more recent article50 on lymphoma
with results similar to Example 1.

Example 351

Disease.—Breast cancer.
Background.—Breast cancer susceptibility genes 1 and

2 (BRCA1 and BRCA2) are 2 mutations that confer a life-
time risk of breast and ovarian cancer of 50% to 85% and
15% to 45%, respectively.

Purpose.—To test whether gene expression profiles
distinguish these 2 types of hereditary breast cancer
(BRCA1 vs BRCA2) from each other and from sporadic
cases.

Patients and Samples.—Breast cancer tissue from 7
patients with BRCA1-related cancer, 7 patients with

BRCA2-related cancer, and 7 patients with sporadic breast
cancer.

Methods.—A cDNA microarray with 6512 cDNA
probes representing 5361 genes was used. Total RNA was
extracted from frozen tumor tissue. The reference sample
was a standard breast cancer cell line. Only genes with an
average spot intensity of more than 2500 pixels in any of
the samples were included in the analysis (3226 genes).
Fluorescence intensity ratios (tumor vs reference sample)
were calculated, and a statistical method (modified F test)
was used to identify 51 genes (genes of interest) among the
3226 genes analyzed whose expression was significantly
different among the disease categories (BRCA1 vs BRCA2
vs sporadic cases).

Results.—An agglomerative hierarchical clustering
algorithm was then applied to the 51 genes of interest
(discriminator genes) to generate gene expression patterns
(profiles). The resultant patterns were different for BRCA1
vs BRCA2 vs sporadic cases in the study population.
Furthermore, accurate class prediction was possible for
BRCA1-positive vs BRCA1-negative tumors.

Figure 10. Self-organizing map. Each partition may contain a dif-
ferent number of genes, although the image for each partition is the
same size for display purposes. The contents of each partition have
been rearranged by clustering. See text for further explanation.
Reprinted from Sherlock39 with permission from Elsevier Science.

Figure 11. Principle component analysis (PCA). The same dem-
onstration data set was analyzed by using either hierarchical
cluster analysis (top) or PCA (bottom). See text for further expla-
nation. Reprinted with permission from Quackenbush.13
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Figure 12. A supervised cluster analysis method. Support vector
machine is a computational entity that accepts positive and nega-
tive training examples (samples with previously known classes)
and uses the knowledge to classify new samples (unknown) into a
class membership, shown as red and green dots separated by a
hyperplane. Reprinted with permission from Gaasterland and
Bekiranov.46

Conclusion.—Gene expression profiles can generate
molecular signatures that may complement current methods
of disease diagnosis and classification. Distinct gene expres-
sion profiles suggest different pathways of disease pathogen-
esis and provide clues to further understanding the cause of
disease.

CONCLUSION
The validity of the computational observations in a micro-
array experiment using current statistical algorithms is often
open to methodologic criticisms.52 Nevertheless, genome-
wide assessment of gene structure and function is a science
in development that requires more patience and less cyni-
cism. Ultimately, the microarray system needs to be comple-
mented by structural genomics and other innovative platforms
to maximize insight into disease pathogenesis and behavior.53
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