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Genomics has been defined as the comprehensive study of
whole sets of genes, gene products, and their interactions
as opposed to the study of single genes or proteins.
Microarray technology is one of many novel tools that are
allowing global and high-throughput analysis of genes and
gene products. In addition to an introduction on under-
lying principles, the current review focuses on the use of
both complementary DNA and oligodeoxynucleotide
microarrays in gene expression analysis. Genome-wide

that may be relevant in disease reclassification, prognosti-
cation, and treatment selection (ie, class discovery); and (3)
use of expression profiles of known disease classes to pre-
dict diagnosis and classification of unknown samples (ie,
class prediction). The current review should serve as an
introduction to the subject for clinician investigators, phy-
sicians and medical scientists in training, practicing clini-
cians, and other students of medicine.
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experiments generate a massive amount of data points that
require systematic methods of analysis to extract biologi-
cally useful information. Accordingly, the current educa-
tional communication discusses different methods of data
analysis, including supervised and unsupervised clustering
algorithms. lllustrative clinical examples show clinical ap-
plications, including (1) identification of candidate genes
or pathological pathways (ie, elucidation of pathogenesis);
(2) identification of “new” molecular classes of diseases

ALL = acute lymphocytic leukemia; AML = acute myeloid

leukemia; bp = base pair; cDNA = complementary DNA;
CLL = chronic lymphocytic leukemia; cRNA = complemen-
tary RNA; DLBCL = diffuse large B-cell lymphoma; EST =

expressed sequence tag; FL = follicular lymphoma; mRNA 5
messenger RNA; PCR = polymerase chain reaction; SOM ¥
self-organizing map

icroarray analysis embodies the essence of genomicgional pathway may be targeted in the development of

by allowing simultaneous (in a single assay) study of novel therapeutics (drug discovetyBimilarly, analyzing
many genes and gene producfsmicroarray system may  gene expression patterns across individual patients with the
be applied to global analysis of genomic DRiexpressed  “same” disease may reveal molecular-level differences that
DNA (RNA),*5 or translated DNA (proteirf)*° All this is may allow refinement of current disease classification,
made possible by the current availability of a powerful set prognostication, and treatment selectiéfit® Other appli-
of technologies that includes miniaturized interrogating (ie, cations of DNA microarray analysis include gene identifi-
probe linked) of solid substrates and computer-assistedcation?®?* screening for DNA mutatiof%?® or polymor-
scanning and imaging devicEésRobust methods of com-  phisms?* and comparative genomic hybridizati#nThe
putational analysis are being developed to interpret thecurrent article focuses on gene expression profiling of dis-
large amount of data generated from microarray experi-eased tissue as a prelude toward gaining pathogenetic in-
ments and to extract biologically useful informattétf. sight into the disease and identifying molecularly distinct

In DNA microarray analysis, an altered gene or bio- classes of individual disease categories. The methods de-

chemical pathway associated with a particular disease mayscribed in this communication are based on a review of the
be revealed by the identification of a consistently up-regu- literature.
lated or down-regulated gene across a cohort of patients
with the same disease. Once identified, the aberrant funcBASICS IN DNA MICROARRAY TECHNOLOGY
A microarray or macroarray is an orderly arrangement (ie,
the coordinates are known) of a usually rectangular grid of
“spots” (cells, features). In DNA microarray analysis, data
are usually presented by columns and rows; columns repre-
sent different samples, patients, or experiments, and rows
represent genes (Figure ?4)Therefore, a cell (feature)
represents the quantification of a gene expression for a
given gene in a given sampgfeThousands of microarray
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GenBank, dbEST). For human experiments, the UniGene
ruw e gamnEficaiizn fers erzrmsian database is preferred because of a low redundancy of repre-

g T sentation and its superb organization, which allows system-
g atic evaluation of the results of the experiment by provid-
i ing full information on the expressed genes.

At present, there are 2 distinct methods of spotting DNA
probes on chips. In one, polymerase chain reaction (PCR)—
amplified ESTs (or whole cDNA clones extracted from
plasmid-containing bacterial cultures) (500-5000 base
pairs [bp] long) are deposited (nanoliter quantities per
spot) on the microarray spots by using high-speed robotics
(Figure 2)® This is the method used in comparative cDNA
microarrays. In the second method, the probes are oligo-
deoxynucleotide sequences (20-50 bp long) that are syn-
Figure 1. Three levels of microarray gene expression data pro-thesized in situ on the chip itself. The aforementioned
cessing. The spots on the actual microarray are imaged afteijatabases are used to obtain the information on the gene-

DNA-DNA hybridization procedures, and the raw data are sub- o0 qific sequences that are used to construct the oligo-
sequently quantified for spot intensity and processed onto a quan-

tification matrix with rows (representing genes) and columns nu.cleot?de probes. This is.the me_tho‘?' used i.n 0”90”“0'?'
(representing samples, patients, or experiments). Reprinted withotide microarrays (oligo chips), which is described in detail
permission from Brazma et 4l. in the next section.

spots may be ordered by printing small fragments of DNA PHOTOLITHOGRAPHY AND THE

(probes) onto a small solid matrix (chemically coated glass,OLIGODEOXYNUCLEOTIDE CHIP

nylon membrane, silicon) using modern technology. The Affymetrix Corporation (Santa Clara, Calif) produces a
term chip is arbitrarily used for solid substrate units with high-density oligo chip (GeneChip) that is less thanxl.5
small dimensions (usually <44 cm). The number of spots 1.5 cm and carries several hundred thousand spots, repre-
on a single microarray chip depends on the size of the chipsenting more than 15,000 human genes. The probes are
and the spotting technique used. Each spot on a DNAsynthesized in situ with use of photolithography and DNA
microarray is less than 250n in diameter (compared with  chemical analysis. The process of photolithography re-
>300um in a macroarray) and carries millions of copies of quires a light source and a filmlike apparatus (a mask) that

a specific probe. transmits light in a pattern that follows a specific design.
The DNA molecule that is tethered (embedded, immo- This technology is borrowed from the computer chip indus-
bilized) to each spot on a microarray chip is callpdobe try. When a computer chip is being made, the mask is first

A coating of polylysine or silane on a glass substrate facili- prepared in a larger scale by designing a circuitry pattern
tates adhesion of the DNA probe. The test samples (usuallyon an opaque chromium film that rests on a glass. A UV
complementary DNA [cDNA] representing messenger beam of light is then transmitted through the mask, and the
RNA [mRNA] from study samples) are calleatgets The passing light is focused onto a photosensitive polymer
interaction (hybridization by base pairing) between probes (photoresist) that rests on a silicon wafefhus, the origi-
and targets defines the experimént. nal pattern of the mask is captured and replicated in a
Various sources of DNA may be used as probes. Al- miniaturized form on the silicon by removing the light-
though genomic DNA may be an acceptable source inexposed parts of the photoresist.
prokaryotes, the presence of introns and intergenic regions In making the oligo chip, a glass slide coated first with a
in eukaryotes makes genomic DNA difficult to use in covalent linker molecule that is covered by a photolabile
higher animals. Regardless, the choice of probes also deprotector is selectively activated at different spots on the
pends on the objective of the experiment. For the study ofchip by UV light shining through a mask with a
single nucleotide polymorphisms, for example, the use of predesigned pattern (Figure®3A set of photomasks with
genomic DNA is essential. On the other hand, microarray different pattern designs is used to expose specific spots for
probes for the study of gene expression patterns are usuallgpecific nucleotide attachments. The base nucleotides are
prepared from expressed DNA sequences (cDNA clonesthemselves photoprotected (photosensitive hydroxyl-pro-
expressed sequence tags [ESTs]). To ensure genomeected deoxynucleotides that are tethered at'tbadband
wide representation, the information to prepare probes isready to be light activated at thé éhd) for subsequent
derived from comprehensive public databases (UniGene light-directed, mask-determined nucleotide attachment
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Figure 2. Complementary DNA microarray experiment. See text for detailed descrip-
tion. PCR = polymerase chain reaction. Reprinted with permission from Duggah et al.

(Figure 3). The whole process of selective light activation MICROARRAY EXPERIMENT FOR
using different photomasks and coupling is repeated to layGENE EXPRESSION ANALYSIS
nucleotides 1 at a time on a growing chain (in situ oligo- In a DNA microarray experiment, the basic requirements
nucleotide synthesis). Therefore, such chips are called are a microarray chip and an RNA sample. Either total
oligo chips, in comparison to cDNA chips in which the RNA or enriched mRNA samples may be used. However,
probes are prepared separately by a PCR amplificationonly 3% of total RNA is represented by mRNA, and there-
process of ESTs or cDNA clones (cDNA chips). fore extracting mMRNA from patient samples in an amount
The Affymetrix Hum6000 chip (1 type of oligo chip) is that is adequate for microarray analysis (approximately 5-
1.28x 1.28 cm and contains approximately 65,000 spots 100 ug per sample) may be difficult. In general, cDNA
(features), each spot measuring<24 um and containing  microarray experiments require more thanpgQof total
approximately 10 million 25 mer oligodeoxynucleotide RNA from target tissues, whereagu§ of RNA may be
probes. A set of 4 such chips contains approximately 6817adequate for an oligo chip microarray experiment. Re-
genes or ESTs. One gene or EST is represented by a probeently described target amplification methods that use in
set that is made up of 20 different spots (features) withvitro transcription (sample RNA—-cDNA—-complementary
probes that differ in their sequences but are all complemen-RNA [cRNA]) may allow the use of even smaller amounts
tary to different domains of the same specific target gene orof test sample (approximately 1-50 ng of total RNA).
EST (ie, the 20 different probes represent different seg-
ments of the same gene or EST) (Figur® Fhis is impor-

tant because the oligo probes are small enough to crosg-
hybridize, and the representation of a gene with multiple r"':'E"‘.—._-._- rrask S THI - - reere
oligomers (ie, the probe set) increases the accuracy of geng  mocon - HIMIDOD = 1roog
detection and quantification. Furthermore, each feature in d = iiiil smem o B 5 5 L i &
probe set is accompanied by a neighbor feature (making & g

. . . . : . g . -
pair), with probes having a single nucleotide mismatch at| &&wrs == saman oot
the center distinguishing the members of each pair (the so; rano - S - FIEES
called perfect match and mismatch features) (Figuid). Al e B i T e

other words, there are 20 feature pairs per gene or EST:

This multiplication of features per gene or EST helps in Figure 3. Light-directed oligonucleotide synthesis on a glass

inte.'rnal .quality controllof the hybridization process de- gjide. See text for detailed description. Reprinted with permission
scribed in the next section. from Lipshutz et at?
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Figure 4. Gene expression monitoring with oligonucleotide arrays. A, Single 1.28-cm array containing probe sets for approximately

40,000 human genes and expressed sequence tags (ESTs). This array contains features (cells) small2e tara®@ only 4 probe

pairs per gene or EST. B, Expression probe and array design. Oligonucleotide probes are chosen based on uniqueness criteria and
composition design rules. For eukaryotic organisms, probes are chosen typically froenthefthe gene or transcript, near the poly-A

tail, to reduce problems that may arise from the use of partially degraded messenger RNA (mRNA). The use of perfect match minus
mismatch differences averaged across a set of probes greatly reduces the contribution of background and cross-hybridizegsesnd

the quantitative accuracy and reproducibility for the measurements. See text for further discussion. Reprinted with gesmission
Lipshutz et af®

In cDNA microarray, a control sample is usually re- Target Preparation: cDNA Microarray vs Oligo Chips
quired for simultaneous analysis with the test sample In cDNA microarray experiments, the initial step is to
(ie, 2-sample analysis on a single chip). Thus, genesynthesize cDNA (by reverse transcription) from total
expression is estimated by comparing the amount of RNA or mRNA extracted from both the test and the refer-
mRNA content in 2 different cell populations (a test ence smples in the presence of nucleotides that are dif-
sample vs a control sample), and the measurement iderentially labeled (test vs control sample) with reporter
given as a ratio. In contrast, in oligo chip analysis, the molecules (fluorochromes for chip arrays and radioactive
usual procedure is to analyze the test sample on 1 oligasotopes for membrane arrays) (Figuré'sjhe labeled
chip and the control or reference sample on another oligocDNAs therefore represent portions or complete seg-
chip. In other words, the 2 samples on 1 cDNA chip can ments of the original mRNA or total RNA from the
be viewed as comparable to 2 samples on 2 oligo chipssamples and are comparatively more stable. This method
Therefore, interpretation of gene expression with oligo requires relatively more RNA per sample (approximately
chips requires comparison of levels from the test sample100pug).
to those of the control or reference sample. Regardless, Differential labeling is not necessary for microarray
both methods of a microarray experiment (cDNA micro- experiments using oligo chips. Sample mRNA (approxi-
array vs oligo chips) consist of several steps, including (1) mately 5 ug) is first reverse transcribed into single-
target preparation (extracting nucleic acids from biologi- stranded cDNA in the absence of labeled nucleotides. The
cal samples and labeling them with either fluorescent single-stranded cDNA is then converted to a double-
dyes for glass array or radioactive isotopes for nylon stranded cDNA that is in turn transcribed to cRNA (ie, in
filters), (2) hybridization (incubation of the labeled tar- vitro transcription) in the presence of biotinylated nucle-
gets with cDNA or oligodeoxynucleotide probes on the otides. This additional step (compared with cDNA
surface of the chip), (3) scanning (computer-assistedmicroarray) amplifies the target molecules (original
reading of signal intensity that is emitted from labeled mRNA) by approximately 50-folét
targets that are hybridized to probes on the chip surface;
laser scanner for fluorescence or Phosphorimager for ra-Hybridization: cDNA Microarray vs Oligo Chips
dioactive isotopes), and (4) computational analysis to ex- In cDNA microarray, the test and reference cDNA
tract biologically useful information from the vast quan- samples, which are differentially labeled with fluoro-
tity of data generated. chromes, are mixed in equal amounts and incubated with a
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Figure 5. Comparison of the steps in complementary DNA (cDNA) microarray experiment vs oligo-
nucleotide chip analysis. See text for a detailed explanation. cRNA = complementary RNA; mRNA =
messenger RNA; PCR = polymerase chain reaction. Reprinted from Schulze and D&bwwitlard
permission from MacMillan Magazines, Ltd.

microarray slide for hybridization to occur (Figure?2).
Each spot on the microarray chip contains enough (mil-
lions) DNA copies to allow probe hybridization from both

molecules.

Scanning: cDNA Microarray vs Oligo Chips

After hybridization is completed, fluorescence from ar-
ray spots with successful probe-target linkage is detected
samples without interference. The abundance of specificand digitally imaged. A laser beam is used to excite the
targets (and therefore the amount of MRNA from the orig- fluorescent markers linked to the hybridized target mol-
inal samples) in the test vs the control sample will dictate ecules, and the degree of fluorescence correlates with the
the amount of binding to specific probes, and the dif- abundance of target molecules at a specific spot. Fluores-
ference in target (MRNA) content between test and con-cent emission is monitored by a scanner, which also pro-
trol samples at a specific spot will be determined by the cesses the image. The raw intensity of fluorescence from
difference in the content of the corresponding reporter each spot is quantified by either a charge-coupled device
camera or a photomultiplier tube, which converts light

In oligo chip microarray experiments, the biotinylated energy into an electrical signal. High-resolution imaging is
cRNA is first hybridized to the oligodeoxynucleotide optimized by use of confocal microscopy. The recorded
probes on the glass slide, followed by binding to an avidin- intensity is saved as a tagged image file format (the inten-
conjugated fluorophore. The abundance of the target mol-sity of a given pixel is proportional to the amount of signal

ecule is estimated by measuring raw intensities of thecoming from the corresponding point on the glass chip).

fluorescence emitted by the linked reporter molecules

(Figure 5)*

In cDNA microarray, the test sample is labeled with the
fluorochrome Cy3 (rhodamine, with a fluorescence emis-
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Figure 6. Microarray images in complementary DNA microarray experiment. Refer-
ence and test samples are differentially labeled (green and red), and an integrated
composite image displays the relative abundance of targets at specific spots displayed
by pseudocolor images. Reprinted with permission from Brockman and Tam¥hinga.

sion wavelength of 565 nm) and the control sample with a Normalization: cDNA Microarray vs Oligo Chips
different fluorochrome, Cy5 (fluorescein, with an emission Raw signal intensity, either from cDNA or oligo chip,
wavelength of 670 nm). Such double labeling allows as- must be adjusted to a common standard (normalized) to
sessment of expression in the test sample in relation tocorrect for differences in overall array intensity that include
expression in the control sample (Figure 5). Independentbackground noise as well as differences in efficiency in
images (one for Cy3 and the other for Cy5), using the detection and data acquisition. In other words, individual
respective excitation wavelengths for generating fluores- chips from many patients or experiments must be compa-
cence with characteristic emission wavelengths, are therrable in other aspects before a legitimate comparison of
generated and subsequently digitally integrated to producegene expression is made. After normalization, the raw gene
a composite image that allows measurement of the ratio ofexpression levels are presented as an expression ratio of
the target molecules in the 2 samples (test and control)test vs control sample, or the gene expression profiles from
These ratios can be presented as either Microsoft Excekeveral samples may be compared with a clustering algo-
files or pseudocolor images that assign red for genes thatithm. Ratios are typically log-transformed to simplify pre-
are expressed higher in the test sample than that of theentation of bidirectional fold differences (ie, produce a
control sample and green for genes that are expressed lowatormal distribution}?
in the test sample compared with those in the control There are several methods of normalization. Back-
sample (Figure 6% ground noise subtraction is uniformly applied to all meth-
In the case of oligo chips, the absolute intensity of ods® In addition, some investigators assume minimal cell-
fluorescence from each spot on the glass chip constituteso-cell variation in the expression of housekeeping genes,
the raw data that are subject to further analysis. Scanningand therefore the spot intensities in each array are rescaled
devices are often equipped with imaging software that accordingly’®® Another method rescales spot intensities
captures spot-specific signal intensity and adjusts for bothbased on the average spot intensity of either the entire chip
background intensity and variance of pixel intensity within or a set of probes representing the same §éhahis
a specific spot. Additional measures to ensure data qualityparticular method assumes that the total number of targets
include the use of replicate pairs of genes in a single arraythat hybridize to probes is the same for both the test and the
or replicate array%:* reference sample, which, therefore, should have the same
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total integrated intensity. Alternatively, each array experi- genes that show expression values below this threshold
ment may be coupled with another experiment with a com-level are discarded. This step assumes that the genes of
mon reference sample to act as a control for normalizationinterest are adequately expressed at least in some patients
purposes. or reference samples. Next, either an arbitrary fold-based
In GeneChip, each spot (containing a perfect match difference (>2-, 5-, or 10-fold difference in spot intensity)
probe) is accompanied by another neighboring cell thator a statistical test (egor F test) is used to select genes that
contains a mismatch probe (an oligonucleotide probe thatshow statistically significant variation in expression among
differs by 1 bp at a central position). The difference in spot patients or experiments. Théest measures the difference
intensity between the 2 samples is used to account forin mean expression values between 2 samples and allows
background noise and nonspecific cross-hybridization the identification of genes with a significant difference.

(Figure 4)% One can also use a pairest for samples from the same
origin (eg, normal and diseased tissue from the same pa-
MICROARRAY DATA ANALYSIS tient) or a nonparametric test (eg, Mann-Whitney test) if

After normalization, spot intensities or ratios are converted one assumes a non-Gaussian distribution of data. The dif-
to a table with a numerical value that is suitable for further ference in mean expression values among 3 or more
statistical analysis. The table, also called a matrix, is madesamples is measured by the F test (Kruskall-Wallis test for
up of rows (representing genes) and columns (representingnonparametric data).
patients or experiments). Therefore, each cell represents an Subsequently, genes that show little variation in expres-
expression value (absolute spot intensity or ratio) that cansion across patient samples or experiments are discarded.
be color coded as red (relatively overexpressed) or greerThe remaining genes become the genes of interest for
(relatively underexpressed). As is, these raw data, whethefurther analysis that includes confirmation of overex-
in the form of numbers or colors, are completely unintelli- pression by real-time PCR. The next step is to group (clus-
gible (Figure 1¥° The primary purpose of a microarray data ter) the selected genes of interest based on similarity of
analysis, based on various statistical techniques, is to extraotxpression. Such grouping may identify genes that may be
order based on similarities and differences in expression. coregulated and therefore functionally related. Such infor-
The first and most important step in microarray data mation may lead to elucidation of pathologic pathways and
analysis is to define the purpose of the exercise. Current uselrug targets.
of microarray data analysis in medical genomics has fo-
cused on 3 separate objectives: (1) identification of candi-Defining Gene Expression Profiles to Facilitate
date genes or pathological pathways (ie, elucidation ofClass Discovery and Class Prediction
pathogenesis); (2) identification of “new” molecular The clustering of similarly expressed genes may gener-
classes of diseases that may be relevant in disease reclasgite a pattern (profile) that may be useful in the separation of
fication, prognostication, and treatment selection (ie, classdistinct phenotypes, classes, or stages of disé&sath
discovery); and (3) use of expression profiles of known gene and sample (patients or experiments) clusters are
disease classes to predict diagnosis and classification obased on similarity of gene expression.

unknown samples (ie, class prediction). The underlying principle is for each measure of gene
expression (spot intensity in a matrix cell) to be represented
Searching for Candidate Genes by an expression vector in an expression space with “n”

The gene expression profile of normal and disease tissualimensions, in which “n” is the number of patients or
can be compared to identify genes that are differentially experiment$? This will allow each gene to be represented
displayed. The information regarding differential display is by a point in expression space where the geometric coordi-
obtained from a single microarray in the case of cDNA nates are defined by the expression vectors from each
microarray analysis as long as the reference sample usegatient or experiment. Accordingly, the similarity between
represents the normal tissue counterpart of the disease ti2 genes, and therefore 2 points in expression space, is
sue under study. deduced from their proximity to each oth&

With oligo chips, raw data from 2 microarrays (one One method of measuring the distance between 2 data
from diseased tissue and another from normal tissue) argoints (known as the euclidean metric distance) is to calcu-
compared to identify genes that are differentially ex- late the square root of the sum of the squared differences in
pressed. Usually, the initial step involves some degree ofthe expression vectors of each patient or experiment [eu-
data filtration. First, a threshold pixel intensity (usually clidean distance ¥ "y, _, (x,—y)? in which “x” and “y”
1500-3000 pixels) is set, based on background intensitiesare the measured expression values for genes X and Y in
and factors that relate to other experimental conditions, andexperiment “i” and “n” is the number of patients or experi-
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ments]**% The euclidean distance metrics are best suitedsimilar analyses (Figure ?JThe process is repeated until
for data that are normalized for degree of expression de-all elements are included in the analysis and a single
spite different absolute levels. Such data transformationdendrogram (a tree) is assembled (Figuré>8y° The
may be unnecessary in an alternative method called theesult is a single hierarchical tree (a dendrogram) in which
Pearson coefficient of correlation).( The latter method intercluster distance (branch length of the dendrogram)
compares genes according to similarity in shape (ie, thedirectly correlates with dissimilarity in gene expression.
direction in expression) rather than absolute magnitude ofOf note, the distance between 2 clusters may be calculated
expression. In contrast, euclidean metrics measure the abby several other previously reported meth&dalso,
solute distance between 2 expression vectors (points) ilmember positions in neighboring clusters are not neces-
space. Closely residing genes in the expression space (iesaily fixed and may vary depending on other alternative
genes with similar expression vectors) can then be groupegermutations.
(clustered) according to various multivariate statistical  Similarly expressed genes are then ordered next to each
methods. other and visualized with color-coded rows (red for
Several statistical algorithms have been used in generatoverexpressed and green for underexpressed genes) (Fig-
ing patterns (ie, expression profiles) of gene expressionure 8). Such hierarchical clustering can also be applied to
that may be used in identifying coregulated genes andsamples instead of genes (ie, sample clustering) based on
different disease classes (or sample categories). Such gengmilarity of expression across different genes (ie, 2-di-
or sample organization (clustering) may be either unsuper-mensional clustering; Figure ®)Therefore, hierarchical
vised (not based on prior information) or supervised (basedagglomerative clustering results in organizing genes into

on prior information§’ functional categoriésas well as in the classification of
disease types and subtype&aich an approach may lead to
Unsupervised Cluster Analysis the revelation of clinically important and previously un-

In unsupervised cluster analysis, the statistical algo- known molecular classes within 1 disease group (ie, class
rithm is not trained to recognize a specific gene expressiondiscovery)?
pattern from a previously known class of genes or group of  In divisive hierarchical clustering, the opposite of the
patients (or experiments) that may be used to classify newaggregative method is performed. The entire set of genes or
members (ie, unknown samples). In other words, unsupersamples is considered a single cluster and is broken down
vised clustering is designed to discover clusters of similarfirst into 2 groups, then into 4, and so forth until all ele-
genes or similar samples (ie, facilitates class discovery).ments have been separated into single elements (Figure
Unsupervised clustering may be hierarchical (classification 7).3® The process involves random selection of defined
with nested classes resembling a phylogenic tree) orvectors for the initial clusters and assignment of genes to
nonhierarchical (classification into clusters without speci- specific clusters based on their similarity to the reference
fying the relationship between individual members of a vectors. With each assigned gene, the reference vectors are
class). Hierarchical clustering may be agglomerative (aredefined to establish a new average, thus ensuring similar-
clustering mechanism that starts from single members andty of genes in a given cluster. The result is a binary tree
their relationship with each other and grows into bigger with information similar to that obtained by aggregative
classes) or divisive (a clustering technique that starts fromclustering?*42
grouping all members in 1 class first and subsequently

breaking the class into smaller groups). Nonhierarchical (Partitional) Clustering Algorithms
Partitional techniques require predetermination of the
Hierarchical Clustering total number of clusters (classes) and amass data elements

Hierarchical agglomerative (aggregative) clustering into these predetermined clusters rather than organize the
(not divisive hierarchical clustering) is the most commonly genes or samples into a dendrogram. One such example is
used clustering method in gene expression analysis. The&k-means clustering:*® First, all members (genes in this
particular method starts with identifying a gene pair with case) are randomly assigned to one of a fixed number of
the most similar expression across patients or experimentglasses. Second, an average value (expression vector) is
(Figure 7)¥ The euclidean distance (or alternative distance calculated for each cluster and is used to calculate
metrics) between 2 genes in expression space is used fantercluster distance. Third, individual members are moved
this purpose, and the identified gene pair undergoes fusiorfrom cluster to cluster to group closely related members
(with a node connecting the 2 genes), and the compositdogether (ie, minimize the overall within-cluster disper-
expression vector (represented by the mean of the 2 expression). Thus, k-means clustering is a divisive and unsuper-
sion levels) is considered as a single element toward furthewised clustering algorithm.
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Figure 7. Aggregative and divisive methods of cluster analysis. The color codes represent
the measured fluorescence ratios. Genes with unchanged expression are colored black.
Red represents relatively high and green represents low gene expression. The intensity of
the colors reflects different degrees of expression. The figure shows the expression levels
of 5 different genes (genes 1 through 5) under 5 different conditiowg).(¢n the
aggregative method of cluster analysis, genes with similar expression (eg, genes 4 and 5 or
genes 1 and 2) are fused and subsequently represented by an average row designation. The
opposite is performed in a divisive cluster analysis. See text for a more detailed explana-
tion. Reprinted from Dopazo et&bith permission from Elsevier Science.
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A similar divisive and unsupervised method known as a Supervised Cluster Analysis
self-organizing map (SOM) assigns genes to a predeter- Unsupervised clustering technigugsnerateclasses in
mined number of classes based on the similarity of theirterms of both genes and samples. In contrast, supervised
expression vectors to reference vectors that are previouslstatistical algorithmspredict classes based on a priori
defined for each clagéin SOM, the reference vectors are knowledge. The procedure starts with training a classifica-
recalculated with the assignment of a new member to thetion machine (ie, a specialized statistical algorithm such as
class so that the new reference vector is even more similaa support vector machine) to recognize specific gene ex-
to the expression vector of the new member of the classpression patterns of known gene classes or patient groups
Such adjustment of reference vectors also affects nearbyeg, normal vs diseased tissue, different disease types). The
classes that are accordingly moved to new positions, andnachine learns to distinguish between members and non-
the result is a group of clusters that contain the most similarmembers of a specific class based on expression data. The
genes (or samples) with the least intercluster dispersionmachine then constructs a classifier (discriminator) that
(Figure 10)* Another unsupervised method of clustering, accurately assigns a new member (an unknown sample) to
principal component analysis, is a mathematical techniquea predefined class (Figure *2Buch a classifier may then
that takes into account redundancy in gene expressiorbe used in assigning genes to functional classes and dis-
across patients or experiments and thus diminishes thesases into predefined categories that might predict diagno-
dimensions of expression space without significant loss of sis, stage, prognosis, or appropriate thetafiy??
information?® Principal component analysis allows opti- The following section provides 3 examples that illus-
mal visual separation of clusters and works best whentrate the use of gene expression profiling in clinical medi-
combined with other clustering algorithms, including k- cine, including disease classification and prognostication at
means clustering or SOM (Figure 11). the molecular level.
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Methods.—A cDNA microarray analysis was per-
Ezparmanis formed by using a special chip (Lymphochip) that con-
N 234067 tained gene probes that are selected from cDNA libraries
prepared from normal and malignant lymphocytes at dif-
ferent stages of differentiation and activation (a total of
17,856 cDNA clones). Ninety-six mMRNA samples were
analyzed, including 62 patient samples (42 DLBCL, 11
CLL, 9 FL) and 34 control samples derived from either
normal lymphocytes or tumor cell lines. The reference
MRNA sample that was mixed with each one of the 96 test
samples was prepared from a pool of mMRNA from 9 differ-
ent lymphoma cell lines.

Results—Based on global similarity in gene expres-
sion patterns, a hierarchical agglomerative clustering al-
gorithm accurately segregated the morphologically rec-
ognized classes of lymphoma (DLBCL vs FL vs CLL)
(Figure 10¥ In addition, restriction of the clustering algo-
rithm to genes that define germinal center B cells revealed
2 distinct gene expression patterns among patients with
DLBCL. This molecular subclassification of DLBCL pro-
vided independent prognostic information. The gene ex-
pression patterns of morphologically different lymphoma
subclasses mimicked those from normal lymphocytes at
different stages of differentiation and activat®n.

Conclusion—Morphologically distinct disease catego-
ries may display equally distinct gene expression profiles.
The establishment of such expression profiles may help in
accurately classifying new cases (class prediction). Simi-
larly, clinically distinct phenotypes of an individual disease
class may be revealed by gene expression profiling (class
discovery). Furthermore, considerable pathogenetic insight
may be obtained by comparing gene expression patterns of
diseased and normal tissue.

:z;—mhnllrmmm“_%u

Figure 8. Aggregative cluster. Reprinted from Shedbekth
permission from Elsevier Science.

Example 216
ILLUSTRATIVE CLINICAL EXAMPLES Disease—Acute leukemia.
Example 1° Background.—Acute leukemia is a deadly disease
Disease—B-cell non-Hodgkin lymphoma. (10%-20% 5-year survival rate in adults) that can be classi-

Background.—B-cell non-Hodgkin lymphoma is clini-  fied into acute lymphoid leukemia (ALL) and acute my-
cally heterogeneous with some variants, including chronic eloid leukemia (AML). Both prognosis and treatment differ
lymphocytic leukemia (CLL) and follicular lymphoma in ALL vs AML.

(FL), which have an indolent but incurable disease pheno- Purpose—To test whether gene expression profiles
type and other variants, including diffuse large B-cell correlate with morphologically recognized subclasses of
lymphoma (DLBCL), which has a more aggressive but acute leukemia (ie, class discovery) and whether genera
sometimes curable disease phenotype. With modern comtion of gene expression profiles from morphologically dis-
bination chemotherapy, DLBCL has a 5-year relapse-freetinct ALL and AML cases allows class prediction of un-
survival rate of less than 50%. known samples.

Purpose—To test whether gene expression profilescan ~ Methods—An oligo chip array (Affymetrix) contain-
accurately distinguish among previously established B-celling 6817 genes was used to array total RNA from bone
non-Hodgkin lymphoma classes and reveal additional mo-marrow samples of 27 cases of ALL (all children) and 11
lecular classes of DLBCL with different clinical courses cases of AML (all adults). For the purpose of class discov-
(ie, assist in class discovery). ery, a nonhierarchical clustering technique (SOM) was
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Figure 9. Hierarchical clustering schema depicting relationships between 96 samples of normal and
malignant lymphocytes. The dendrogram on the left lists the samples studied and provides a measure
of the relatedness of gene expression in each sample. The dendrogram is color coded according to the
category of messenger RNA sample studied (see upper right key). Of note, the dendrogram along the
top of the color map is the same as the one along the side but rotated and inverted. CLL = chronic
lymphocytic lymphoma; DLBCL = diffuse large B-cell ymphoma; FL = follicular lymphoma; NI =
normal. Reprinted from Alizadeh et@lith permission from John Wiley & Sons, Ltd.

used with a priori specification of either 2 or 4 clusters and is given a value that predicts ALL or AML class categori-
application of data filtration that discarded genes that zation, and the total of all such values from all the informa-
showed less than a 5-fold difference in expression amongtive genes is used to cast the final vote (weighted-voting
the test samples. For the purpose of class prediction, spealgorithm).

cific genes (1100 genes) that are differentially expressed in  Results—The unsupervised and nonhierarchical SOM
ALL vs AML were identified by a modified clustering technique generated either 2 (ALL vs AML) or 3 (AML vs
technique callesheighborhood analysisOf these, the 50  B-cell ALL vs T-cell ALL) distinct expression patterns that
stronger discriminators (informative genes) were used tohighly correlated with morphologically and immunophe-
predict the class of an unknown sample based on the siminotypically distinct acute leukemia categories. The class
larity in gene expression (of the informative genes) of the prediction based on the distinct expression profiles gener-
new sample to those of the ALL or AML classes. In other ated from known cases was successfully applied to 34 new
words, the expression level of a gene from the new sampldeukemia samples, with 29 correctly predicted.
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Figure 10. Self-organizing map. Each partition may contain a dif-

BRCAZrelated cancer, and 7 patients with sporadic breast
cancer.

Methods.—A cDNA microarray with 6512 cDNA
probes representing 5361 genes was used. Total RNA was
extracted from frozen tumor tissue. The reference sample
was a standard breast cancer cell line. Only genes with an
average spot intensity of more than 2500 pixels in any of
the samples were included in the analysis (3226 genes).
Fluorescence intensity ratios (tumor vs reference sample)
were calculated, and a statistical method (modified F test)
was used to identify 51 genes (genes of interest) among the
3226 genes analyzed whose expression was significantly
different among the disease categorBRCA1lvs BRCA2
vs sporadic cases).

Results—An agglomerative hierarchical clustering
algorithm was then applied to the 51 genes of interest
(discriminator genes) to generate gene expression patterns
(profiles). The resultant patterns were differentBRCAL
vs BRCA2vs sporadic cases in the study population.
Furthermore, accurate class prediction was possible for
BRCAZpositive vsSBRCAnegative tumors.

ferent number of genes, although the image for each patrtition is th
same size for display purposes. The contents of each partition hav
been rearranged by clustering. See text for further explanation,
Reprinted from Sherloékwith permission fronElsevier Sciace.

Conclusion—Both class discovery and class prediction

of disease categories may be possible with use of geng

expression patterns, and such application may complemen
disease diagnosis and classification. Of note, the investiga
tors used the unsupervised and nonhierarchical (SOM)
technique that accurately segregated cases of AML from
cases of ALL. They also used a supervised learning classi

fication method based on known classes to develop a clast

sifier (molecular signature) for class prediction. A similar
approach was used in a more recent aftiole lymphoma
with results similar to Example 1.

Example 3!

Disease—Breast cancer.

Background.—Breast cancer susceptibility genes 1 and
2 BRCAlandBRCA3J are 2 mutations that confer a life-
time risk of breast and ovarian cancer of 50% to 85% and
15% to 45%, respectively.

Purpose—To test whether gene expression profiles
distinguish these 2 types of hereditary breast cancer
(BRCA1vs BRCAJ from each other and from sporadic
cases.

Patients and Samples—Breast cancer tissue from 7
patients withBRCAZ%related cancer, 7 patients with

%

-

[}

-
i.-

Figure 11. Principle component analysis (PCA). The same dem-
onstration data set was analyzed by using either hierarchical
cluster analysis (top) or PCA (bottom). See text for further expla-
nation. Reprinted with permission from Quackenbldsh.




Mayo Clin Proc, September 2002, Vol 77

Primer on Medical Genomics Part Il 939

5,
s %% 6
] ®

« 2 o® ,
L b -'F :‘ iy 8

L

1- '-- ? l° .
..I‘ - . o 9.
” FEN "‘ 10.
e W : 11.
.ﬂ' o l‘ — | .
13.

Figure 12. A supervised cluster analysis method. Support vector
machine is a computational entity that accepts positive and nega—14
tive training examples (samples with previously known classes)
and uses the knowledge to classify new samples (unknown) into a

class membership, shown as red and green dots separated by g5

hyperplane. Reprinted with permission from Gaasterland and
Bekiranov!®

16.

Conclusion—Gene expression profiles can generate

molecular signatures that may complement current methodst’-

of disease diagnosis and classification. Distinct gene expres-

sion profiles suggest different pathways of disease pathogen4s.

esis and provide clues to further understanding the cause of

disease. 19.

CONCLUSION
The validity of the computational observations in a micro-

array experiment using current statistical algorithms is often 21.

open to methodologic criticisnis Nevertheless, genome-
wide assessment of gene structure and function is a science

in development that requires more patience and less cyni-22.

cism. Ultimately, the microarray system needs to be comple-

mented by structural genomics and other innovative platforms 5

to maximize insight into disease pathogenesis and beliavior.
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