LINUX/WINDOWS INTEGRATION

Authentication and

[ZT1#] Authentication and authorisation are the
Tweedledum and Tweedledee of access control. They're

Authorisation in Samba

separate, but you never see them apart, says Dr Chris Brown.

ctually, it's hard to over-estimate the importance of
Samba in facilitating Linux / MS Windows integration and
the adoption of Linux into the commercial
marketplace. The quality of the work being done by
the Samba development team certainly deserves our recognition
and support. Last month, we began our tour of Samba by looking
at the overall picture of file sharing in Windows. We talked about
workgroups and shares, and about the SMB/CIFS protocol that
makes it all work. We saw that Samba is a suite of programs and
services that can provide file and print sharing services to
Windows clients, and took a brief look at its configuration file,
smb.conf. We learned about Samba’s web-based graphical
configuration tool, SWAT (Samba Web Administration Tool). We
also saw that Samba has client-side components that allow you,
for example, to mount shares exported by Windows file servers
onto a local Linux directory.

This month, we'll complete the tour by looking at the business
of authentication and authorisation in Samba. Let's start by making
sure we know what ‘authentication’ and 'authorisation’ mean.

Authentication is the business of making certain that you
know the identity of a user who is requesting a service - in this
case, the service in question is access to a file share or a printer
exported by a Samba server. From the end user's viewpoint,
authentication is almost always just a matter of supplying a
username and a password. Authorisation is the business of
deciding whether a specific user is allowed to access a specific
resource; for example, is user jane allowed to access the share
she’s trying to connect to, and if so, is she allowed to read and
write the files in that share?

Authentication and authorisation usually go together,
Authorisation checks against a user identity are meaningless
unless you're sure you know who the user is. Conversely,
authentication is a bit pointless unless you're subsequently going
to use your knowledge of the user's identity to control what he
can do. Nonetheless, it's important to remember that
authentication and authorisation are actually separate operations.
Samba always needs to have a Linux UID to run with,
corresponding to the user on the windows client.

Author info

Behind the scenes

It will help us understand Samba’s security mechanisms if we
know a little bit about how it works behind the scenes. When
Samba's smb server starts up, there is initially just a single parent
process running as root. When a user on a Windows machine
connects to a Samba share, a new TCP connection is opened to
the Samba server. The server will authenticate the user and
check the user identity against the access control directives in its

70

LXF44 SEPTEMBER 2003

configuration file. If the user is allowed to connect to the share,
Samba starts up a child process to service that connection. When
the client accesses a file in the share, the child process switches
to run under the identity of the client user. Requests to read and
write any files within the share will then be checked against the
usual ‘rwx’ file permissions for that user. These checks aren't
made by Samba, they're just Linux’s underlying security model
being applied. The overall process, including some details we'll get
to in a minute, is shown in Fig1 on the right.

There are a couple of points to note about all this. First of all,
access controls are applied at two levels; first by Samba, as
determined by entries in its own config files, and second, by the
underlying Linux filesystern. An important consequence of this is
that Samba needs to establish an identity for the user which is
known to Linux, corresponding either to an entry in /etc/passwd, or
the NIS passwd map, or whatever user account database the
system is configured to use. To put it in its most simple terms,
Samba always needs to have a numeric Linux user 1D (UID)
corresponding to the client user.

Why is this an issue? With NFS-based file sharing (to digress
for a moment) Linux simply assumes that the UID of the user on
the server is the same as his UID on the client. So if user mike on
a Linux client has the UID 507 NFS uses the UID 507 on the
server, too. In the case of SMB-based file sharing, the client
machine is probably some version of Windows, and of course,
Windows simply doesn't use UNIX UIDs. So in this case, it's the
user name that's transferred to the server — hence the need to
be able to resolve the name onto a UID.

Encrypted passwords

Now a bit of history. Early versions of Windows, such as Windows
95, didn't really know about users at all. You didn't have to log in
on the machine. It's true that if the machine was configured to
use Microsoft networking, you'd be asked for a username and
password when the machine booted. But it didn't use that
information to decide whether you were allowed to use the
machine, it simply squirrelled it away to use later if the machine
tried to connect to an SMB share. Then it simply passed the
name and password, in cleartext, to the server, In the case of a
Samba server, it could use these to authenticate against a regular
UNIX account, thus establishing a UID for the client.

Later versions of Windows, such as NT, 2000, and XP,
mandate a proper authenticated login to the machine. More
importantly, Microsoft changed the authentication scheme in SMB
to use a challenge-response mechanism based on an encrypted
password. Of course, the encryption method was not compatible
with the one used in UNIX. Whilst this was a good step forward for

www.linuxformat.co.uk

Client request connection to share 1 Fig1 An overview of
how Samba works
No behind the scenes in
& ing decisions to
Client IP address ——— > Deny access Em'.ﬁ acces.:ns
allowed?
= security=user
smbpasswd file
Yes
Y

security=server

security=domain 0K

Y

AT T—— Resolve user name to

Unix UID

oK

to share?

Yes

Establish SMB session
Create child process

=

Client accesses share *

smb.conf

Connection accepted —=

Child process switches
to user’s UID

'

Fail
Authenticate user ——— Deny access

Fail

————» Deny access

No

is user allowed access ———» Deny access

Fail

Access the file —————> Deny access

Deliver data to client —=

Windows, it caused consternation in the Samba world because the

server no longer received a cleartext password and was thus not
able to authenticate against the UNIX account database.

Samba can still be made to use cleartext passwords by
including the directive
encrypted passwords = no

in the smb.conf file. It even provides patch files to doctor the
registry on some versions of Windows to revert to the use of
Cleartext passwords. But cleartext passwords are not really a
good idea, and this approach is, as they say, deprecated.

The Samba Password Database

To cope with the encrypted password mechanism, Samba was
forced to use its own account database in which the windows
user names and encrypted passwords could be stored. On my
Red Hat system, this file is fetc/samba/smbpasswd, though if

File permission OK

of the Samba suite to manage this file. This program can be
invoked by a normal user to change their Samba password, in
much the same way that the passwd command is used to
change regular Linux passwords.

The superuser can run smbpasswd to change any user's
password or to add new users to the file. For example, the
command:

smbpasswd -a kim

will add the user kim to smbpasswd. It will also prompt for, and
set, kim's password. For this command to succeed, kim must
already have a regular Linux account.

The four security modes

To round off our discussion of authentication we should discuss
the four 'security modes' of Samba, as set by the ‘security’
directive in the [global] section of smb.conf. Typically, you will see

you've installed Samba from source, it might be elsewhere. a line like this:
There's also a program called smbpasswd that is provided as part security = user
www.linuxformat.co.uk

»

LXF44 SEPTEMBER 2003 71

€ which means that users will be authenticated against Samba’s

local account database, and access to shares will be controlled
on the basis of that identity. There are three other possible
security settings: share, server, and domain.
‘SHARE’ LEVEL SECURITY In this mode, which comes from the
early days of Windows networking, users are not required to
identify themselves but are simply required to supply a valid
password on a per-share basis. Share level security is like having
a key to a door. The door opens because you have the right key,
not because it knows who you are. This mode sits very
uncomfortably on top of the SambalLinux security model
because, as we've already seen, Samba needs to figure out a
Linux UID to run with when it's accessing the files in the share.
For share level security, it has a complicated and confusing set of
rules for doing this. We won't go into the details, because share
level security is pretty much obsolete.
‘SERVER’ SECURITY MODE Server security mode is similar to
user mode, except that Samba will first try to authenticate the
user by consulting another SMB server such as an NT server (or
another Samba server). This is useful if you have several Samba
servers on the network and want to consolidate your user
account and password data onto a single machine. For example,
the directives:

security = server

password server = SATURN
tell Samba to forward all authentication queries to the machine
SATURN.
‘DOMAIN’ SECURITY MODE Finally, in domain security mode
Samba will try to validate the username/password by passing it to
a Windows NT Primary or Backup Domain Controller. Additional
setup is required for this to work. In particular, a machine account
{also known as a ‘trust account’) needs to be created for the
Samba server on the domain controller, This is beyond the scope
of our current discussion.

Note that whilst ‘server’ and ‘domain’ security modes delegate
the authorisation process, they do not obviate the need for the
client user to have a Linux user account.

Authorisation

The discussion so far has all been about authentication. What
about authorisation? As we've already seen, authorisation checks
are made at two levels, first by Samba itself, under control of

Samba resources

Useful links for more information

72 LxF44 SEPTEMBER 2003

directives in smb.conf, and second, by the underlying Linux
filesystem. Here, we'll focus on Sambd's authorisation directives.
IP-BASED ACCESS CONTROL One of the simplest forms of
access control is done not on the basis of user identity but on the
basis of the identity (or more specifically the IP address) of the
client machine. For example, a directive in the [global] section of
smb.conf like this:

hosts deny = ALL EXCEPT 192.168.0. 127.

will disallow connections from all hosts except those on the
192168.0 network (since this is one of those non-routable
‘private’ IP network addresses, this entry presumably refers to the
local internal network). The “127 entry also allows connections
from the local machine using the loopback address. This is
important because although it’s unlikely you'd want to connect to
a Samba share on your own machine, some administrative tasks
like changing Samba passwords, and running the configuration
tool SWAT, require a connection to the local Samba server.
USER-BASED ACCESS CONTROL You can explicitly specify
which users are allowed to access a share. For example, the
share definition:

[payroll]

path = /accounts/payroll

read only = no

browseable = yes

valid users = david mary
allows access to the [payroll] share by the users david and mary.
Alternatively you can use an entry such as

valid users = @accountants
which allows access to anyone in the Linux group accountants (or
in the NIS netgroup of that name, if the system is using NIS). If
there is no valid users directive, the default is to allow all users
to connect. This isn't as open as it sounds, because in reality it's
the underlying Linux file permissions which will limit who can do
what with the files in the share.

GUEST ACCESS | made the point earlier about “no authorisation
without authentication”. Well, there's an exception to this rule.
Samba allows you to serve shares to users who are not able to
authenticate — the so-called guest users. Examining how to set
up guest access is an interesting exercise in understanding how
Samba's authorisation mechanisms and the underlying Linux
security model work together.

What we'll do here is to establish a guest share called
‘hlackboard' corresponding to the directory /home/bboard. Now,
even for unauthenticated guests, Samba must have a Linux user
identity to adopt when accessing the share. In this case we'll
create a ‘mythical’ user called sam (Mythical in the sense that
there is no warm pink body of this name; and no-one can
actually log in to Linux as sam. The account exists simply to give
Samba an identity to use when it is accessing the share on
behalf of guests.)

First, we'll create the Linux user account like this:

useradd -c "Samba guest” -d thome/bboard -s /shin/nologin
sam

Specifying a 'shell' of /sbin/nologin ensures that no-one can
log in to this account; consequently, sam’s password is essentially
irrelevant. (Guest logins aside, it's worth pointing out that if you're
creating a user account on Linux for the sole purpose of allowing
access to shares through Samba, rather than (for example)
allowing the user to log in and type commands at a shell, it's a
good idea to disable the login as shown above.)

www.linuxformat.co.uk

The useradd command will also create the (home/bboard

perform a full domain login in the way that Windows NT, 2000

directory and set it to be owned by sam. It looks like this:

Is -Id /home/bboard

drwx——— 3 sam sam 4096 Jun 15 11:27 thome/bboard/
Now we need to add two lines to the [global] section of

smb.conf, like this:

[globall

map to guest = Bad User
guest account = sam

The first line tells Samba that if a user tries to connect who
does not have an account on the server, it should map the
identity of the user to that of the guest account. The second line
specifies the identity to use for the guest account — the mythical
user ‘sam’ we just created. (As for all the directives, there is a
compiled-in default for this; in this case it's usually the user
account 'nobody’)

Finally, we will be needing a section in smb.conf to define the
share itself:

[blackboard]
path = /home/bboard
guest ok = yes
writeable = yes

The guest ok line means just what it says — it's OK to allow
guest users to connect to this share. The last line makes the
share writeable — probably not something you'd really want to do
for a guest share in the real world.

After making these changes, you'll want to tell Samba to re-
read the file. You can do this by sending a SIGHUP signal:

killall -HUP smbd

or, on Red Hat, by using the handy service command:
service smb reload

Now, if all is well, you should be able to connect to the share
as a guest. To test this | created a user account called sara on a
Windows 2000 client. Sara does not exist as an account on my
Samba machine. | was able to connect to the share, and to read
and write files there, Interestingly, if you look at the files that sara
created, you'll see that they're actually owned by our mythical
gLIESt user, sam.

What happens if you connect to this share as a user that does
have a valid account on the server {ie a user with entries in
letc/passwd and in smbpasswd)? To test this | created another
user mike with accounts both on Windows 2000 and on the
Samba server. Whilst mike is able to see the blackboard share, he
won'’t be able to list the files in it. Why is this? In this case, Samba
is happy to allow mike to connect to the share, but the underlying
rwx——— permissions on the /home/bboard directory won't
allow him to access the file. In this case, Samba is now running as
'mike’ not as 'sam:

Fancy footwork with Samba

This introductory tutorial has focussed on the use of Samba as a
file server and describes functionality which has, for the most
part, been around in Samba for quite a while (since version 2.0).
Version 2.2 added and consolidated several other capabilities
which allow Samba to take over a number of additional roles in
Microsoft networks. Principally, Sarmba can act as a PDC {Primary
Domain Controller). This includes the authentication of Windows
95, 98, NT, 2000 and XP users against its security database.
Note, however, that Windows 95, 98 and XP home edition don't

www.linuxformat.co.uk

and XP Professional clients do.

Samba also supports domain logon services including logon
scripts, roaming profiles and system policies. Logon scripts are
scripts (.BAT or .CMD files) that are executed on a client when a
user logs on to a domain. A commen use is to automatically map
shares onto network drive letters, The scripts are held in the
domain controller, but run on the client. Roaming profiles are
somewhat inappropriately named — it's the user that can roam;
the profile stays put, that's the whole point. Profiles define user
preferences such as the desktop configuration and what's on the
menus. Roaming profiles allow users to log in on any client and
download their own profile from the domain controller.

One thing that Semba won't do is to act as a Backup domain
controller (BDC) against an NT-based PDC (or vice versa). This is
because it doesn't support the protocol which Microsoft use to
synchronise the security database between PDCs and BDCs. You
have to remember that Microsoft don't publish their protocols,
nor do they make available the source code for their
implementation. Writing code to interoperate with Windows on
the network involves a good deal of packet-sniffing and reverse
engineering. It's a testament to the hard work of the Samba team
that anything works at all!

The winbindd service

As we've seen, although Sarmba can delegate authorisation to an
NT domain controller, it still requires all clients to have valid Linux
accounts. These can be in the local fetc/passwd file, or be served
from the NIS passwd map, if you're using NIS. Although NIS
allows you to centralise the user account database, you still need
to create user accounts for each of your Windows client users,
and with a large user population this is a chore system
administrators would prefer to avoid, A fairly recent addition to
Samba, the winbindd daemon, extends the range of mechanisms
which Linux can use to perform user name lookups by allowing
an NT server to be consulted.

This requires changes to the entries in the name service
switch file so that the resolvers (the library functions which
actually perform the user name lookups) know where to look.
For example, an entry in /etc/insswitch.conf like this:
passwd: files winbind
tells the resolvers to first look in the local passwd file and then to
consult the wingbindd daemon. For details, see the winbindd
manual page.

On the horizon

At the time of writing this tutorial, the beta release of Samba 3.0
has just been announced. By the time you get to read this, a
production release may be out. The authentication system has
been almost completely re-written in this release. There is
support for Active Directory (according to the release notes, "this
release is able to join a ADS realm as a member server and
authenticate users using LDAP/Kerberos"). However, Samba 3.0
cannot function as an Active Directory domain controller, and the
restriction of not being able to synchronise between NT PDCs
and BDCs remains. There is improved support for UNICODE (16-
bit character sets). There's a new ‘net' command, designed to
look like the net command in Windows/DOS, and a slew of other
improverments. This release looks set to move Samba a good deal
further down the road to provide a complete Linux/Windows
integration solution. &4

LXF44 SEPTEMBER 2003

73

