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Abstract

The recent publication of a complete reference sequence for the Plasmodium
Jalciparum genome is a momentous event for malaria researchers. In addition,
genomic and functional genomics data is now available for six further
Plasmodium species and eight non-Plasmodium species of apicomplexan
parasites. These datasets can greatly expedite the identification of candidate
targets for drug, vaccine and diagnostic development, in addition to enhancing
our basic understanding of malaria parasites. But how can researchers
most effectively access and exploit genomic-scale data, integrating this
information with the results from other experiments? Bioinformatics
research is fundamentally no different from *wet lab’ experiments conducted
at the bench, requiring an understanding of the starting reagents (databases),
the strengths and weaknesses of experimental (computational) methods,
and a critical analysis of the results obtained. This chapter discusses the
nature and organization of data resources, strategies for data mining, and the
interpretation of computational results.
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1. Introduction

Now is an exciting time to be engaged in malaria research. Significant
technological advances, research effort, and financial investment have
produced a complete reference genome for Plasmodium falciparum (Gardner
et al., 2002b), effectively complete genome sequences for P. yoelii, knowlesi,
vivax, and several other apicomplexan parasite species (see below), and
complete genome sequences for both the human (and mouse) host and the
Anopheles gambiae vector (Holt et al.. 2002). Advances in genomics and
bioinformatics affect all malaria researchers, from the molecular biologist
interested in rifin gene organization, to the developmental biologist studying
stage-specific gene expression, to the cell biologist investigating protein
trafficking to Maurer’s clefts, to the evolutionary biologist exploring the
origins of cytoadherence ligands, to the immunologist seeking a target for
vaccine development, to the population geneticist studying allelic variation
for evidence of positive or negative selection. How can we as parasitologists
access, manage, and utilize the surfeit of emerging data, integrating *dry-lab’
computational research with “wet-lab’ studies at the laboratory bench?

The search for — and functional analysis of — genes is increasingly moving
towards high-throughput studies of the whole genome in parallel, generating
huge data sets related to transcript expression and transcriptional regulation,
protein translation and steady-state levels, protein-protein interactions,
polymorphic diversity. etc. All of these data need to be stored. analyzed,
and made widely accessible. Many useful datasets and analysis tools are
now accessible on-line, offering great potential for expediting malaria
research and stimulating new lines of investigation, but these resources are
scattered throughout the internet. One purpose of this chapter is to provide a
compendium of on-line resources for the malaria researcher.

Of course, the development of new kinds of data also brings the need
for new tools and skills to navigate the continually changing information
landscape, whether to find the 5" end of your favorite gene, determine the
hypothetical function for cDNAs on a microarray, or identify a potential
target for drug, vaccine, or diagnostic development. Indeed. it is increasingly
possible — and at times even essential — to conduct malaria research in
silico. While this does not obviate the need for wet-lab experimentation,
computational approaches often provide a useful complement, and can be
much faster than conventional benchwork: the effective integration of wet-
lab and computational approaches can produce dramatic research advances.
A second purpose of this chapter is to provide a bioinformatics primer for
malaria researchers.

Bioinformatics for the average bench scientist and expert alike has
evolved rapidly over the last decade, and need not be a “black box™. The
inner workings of the many common tools are well described in various
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textbooks (Baxevanis and Quellette, 2001; Gibson and Muse, 2001; Mount,
2001; Baxevanis er al., 2003) and will not be discussed here in any detail.
The field has also accumulated experience with the efficient application
of bioinformatics tools and approaches. Bioinformatics techniques, like
laboratory techniques, can generate misleading results, and it is therefore
critical to understand the strengths and weaknesses of the methods employed.
A properly designed bioinformatics experiment includes controls and
safeguards designed to detect potential artifacts.

Other contributions to this book describe laboratory approaches and
techniques now being applied to Plasmodiuni, many of which employ and/or

generate genomic-scale data. In this chapter, we take a ‘behind the scenes’

look at how genomic data are generated, stored and analyzed, in hopes
that this will enable researchers to design experiments that use these data
effectively. We begin with a brief introduction to the types of data that one
can expect to find, including some relevant information on how these data are
processed. The following section describes currently available Plasmodium
resources, with notes on data organization. We then discuss the power of
database queries, illustrated by a series of queries intended to elucidate
candidate vaccine antigens (with suggestions for effective data-mining
and notes on common pitfalls). Finally, we provide a few notes on newly
emerging data types, and opportunities for the future.

2. The Datasets

Genomic-scale datasets are currently available for several Plasmodium
species, including P. berghei, chabaudi, falciparum, knowlesi, reichenowi,
vivax, voelii. Table 1 indicates which data types are publicly available for
each species as of October 2003. A large amount of data is also available
for other related apicomplexan species, including Babesia bovis, Theileria
annulata, Theileria parva, Toxoplasma gondii, Eimeria tenella, Neospora
caninum, Sarcocystis neurona and Cryptosporidium parvum (Table 2), and
for the human and mouse hosts and the insect vector Anopheles gambiae
(Table 3).

Data types available for Plasmodium falciparum include information on:

Nucleotide Sequences

*  Genomic sequence (del Portillo et al.. 2001; Tchavtchitch er al., 2001;

Carlton er al., 2002; Gardner et al., 2002a) and Genome Survey
Sequences (GSS) (Carlton and Dame, 2000; Janssen et al., 2001).
*  Expressed Sequence Tags (EST) (Watanabe et al., 2001 Li et al., 2003).

RNA Expression
«  ESTs and Serial Analysis of Gene Expression (SAGE) tags (Munasinghe
etal., 2001"
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Table 1. Data sources for Plasmodium and other Apicomplexan parasite species
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Table 3. Selected vector and host resources
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*  Microarrays based on DNA or cDNA clones (Hayward et al., 2000;
Mamoun et al., 2001), or oligonucleotides in either glass slide (Bozdech
et al., 2003a; 2003b) or photolithographic (Affymetrix) format (Le Roch
et al., 2002; 2003).

Protein Expression
»  Tandem mass-spectrometry (Florens et al., 2002; Lasonder et al., 2002).

Genetic Organization and Population Structure

«  Optical maps (Lai er al., 1999).

»  Microsatellites (Su er al., 1999).

*  Single-Nucleotide Polymorphisms (SNPs) (Mu et al., 2002).

While it is beyond the scope of this chapter to provide a detailed
description of each data type, it is worth a short digression to introduce some
of the relevant technology and terms. Familiarity with the processes involved
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in data generation facilitates recognition of potential artifacts and sources
of error, minimizing the chance of error propagation in silico — a risk that is
inherent in computational bioinformatics.

2.1. Genome Sequence and Assembly

Two strategies are commonly employed for genome sequencing: a
hierarchical approach in which the genome is broken down into smaller
mapped fragments for sequencing, and a shotgun approach in which the
whole-genome is subjected to random sequencing and assembly en masse.
The former may consume considerable resources in mapping and/or
fractionation of pure genomic fragments, while the latter poses greater
computational problems in assembling the resulting sequence data.

The P. falciparum genome was sequenced using a hierarchical approach,
in which chromosomes were separated in pulse field gels (and some
chromosomes were further sub-cloned into YACs) prior to the production
of random clone libraries for sequencing (Gardner et al., 1998; Bowman
et al., 1999; Gardner et al., 2002a; 2002b; Hall et al., 2002; Hyman et al.,
2002). The P. yoelii genome was sequenced using a whole-genome shotgun
approach (Carlton et al., 2002).

In either approach, sequences generated by random sequencing (of either
the entire genome, or individual chromosomes or smaller fragments) must be
reassembled into larger pieces of contiguous DNA, or “contigs”, and several
software packages are available for contiguating sequence reads. Contigs are
then organized into larger “scaffolds” containing gaps between the individual
contigs, based on information from mapping data, end sequences from large-
insert clones, etc. Overall, genome assembly is a tricky business; common
problems and sequence artifacts include:

*  Repetitive regions of the genome can cause mis-assembly errors, i.e.

sequences that are not adjacent to one another in the genome can
become artificially merged if they contain identical stretches of sequence
(repeats). While the P. falciparum genome is relatively small (by
eukaryotic standards), and ‘satellite DNA and other repetitive sequences
are not particularly abundant, the extremely high A+T nucleotide content
raises similar problems: unique sequences are hard to find in a two letter
alphabet!

*  When hierarchical sequencing approaches are used, DNA sequenced

from one fraction (e.g. one chromosome) may be contaminated with
DNA from another fraction (chromosome). Thus, genes may initially
,appear to be located on the wrong chromosome, or on multiple different
chromosomes. Such sequences usually do not contiguate with the
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majority of the sequences and appear as “singlets” or orphan sequences
until sequences for the entire genome are pooled and compared for
final assembly. Early stages of assembly of the P. falciparum genome
contained many overlapping fragments of HRP2, a known single-copy
gene. Once the entire genome is assembled, most the remaining orphan
sequences are likely to be attributable to contaminating DNA, mis-
assembled sequence reads, and other artifacts ... but these sequences
will undoubtedly include some valid sequences as well, including RNA-
and protein-coding genes.

* Shotgun sequencing provides an extremely cost-efficient means to

identify most sequences, but the laws of probability and combinatorics
ensure that some sequences will be missed. Moreover, because genomic
sequences differ in their clonability, not all will be represented in the
library (a problem that is particularly acute for A+T-rich genomes),
shotgun sequencing rarely achieved the theoretical level of sequence
coverage. Thus, while the 5X random shotgun sequence available for
F. yoelii means that 5 genome equivalents of DNA have been sequenced
(>100 Mb), the assembled sequence still contains many gaps (>5000).
Closing such gaps is a laborious and expensive process, and as of this
date the P. falciparum genome still contains a few physical gaps and a
few “unmapped” regions of sequence that need to be correctly placed in
the genome.

* If the sequence reassembles into multiple pieces, how should these

pieces be ordered and oriented? In the case of the P, Jalciparum genome,
two sets of physical anchors or genome landmarks were available
to help order the fragments along the chromosomes into scaffolds: a
microsatellite map (Su ef al., 1999) and an optical map (Lai et al., 1999).
P. falciparum chromosomes 6-8 (affectionately known as the “BLOB”)
could not be resolved on a pulse-field gel, and posed a particular
challenge. Additional “Happy maps” were therefore constructed to
facilitate the ordering and assembly of these chromosomes (Hall ef al.,
2002).

*  Contaminating sequences from cloning vectors (plasmids, transposons),

cloning hosts (E. coli, yeast), human DNA and other organisms Being
sequenced may enter into raw sequence output. Users of sequence
data should investigate any suspected cases of horizontal gene transfer
very carefully, especially at the DNA nucleotide level and via genomic
Southern blots, to guard against such sequencing artifacts.

Each of the above difficulties can be resolved, but users examining pre-
publication data are cautioned to be aware of potential sequence artifacts.
P. falciparum sequences have been cleaned of most artifacts, but sequences
for other species still have problems. For example, the P. reichenowi sequence
is known to be heavily contaminated with monkey DNA.
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2.2. Maps

Genetic and physical maps consist of markers at specific genetic or physical
locations within the genome. Classically, these have been constructed based
on cytogenetic banding patterns, or by using genetic crosses to map loci
responsible for various phenotypes. Unfortunately, because the nuclear
envelope does not break down during mitosis in Plasmodium (as in most
protozoa), it is not possible to isolate condensed chromosomes for the
analysis of banding patterns. Genetic mapping studies based on classical
genetic crosses are feasible, however, and 1 ¢M in P. falciparum has been
measured as ~17 kb (Su et al., 1999). (Centimorgans provide a standard
measure of recombination frequency; 1 ¢M represents an average distance
of 10 Mb in humans). Due to the difficulty of conducting classical genetic
crosses and mapping of phenotypes in Plasmodium, however, alternative
approaches have also been developed. Both microsatellite and optical maps
of the Plasmodium genome have facilitated ordering of the hundreds of
genomic contigs onto chromosome scaffolds used for genome closure.

Optical maps rely on novel imaging technology to construct a
chromosome-scale restriction enzyme map. Large fragments of chromosomal
DNA are attached to a solid surface under gentle fluid flow. After adhesion, a
restriction enzyme is added to cleave the DNA in situ, leaving an ordered line
of fragments, whose size can be assessed microscopically based on labeling
with an intercalating DNA dye (providing a quantitative measure proportional
to DNA content). Optical maps have been created for Plasmodium falciparum
strain 3D7 using two different restriction enzymes (Lai et al., 1999).

Microsatellite maps are based on the use of PCR primer pairs that amplify
regions differing in length between the two parental genomes, converting a
sequence (length) polymorphism into a genetic marker (Su et al., 1999). By
examining the lengths of the PCR products in the progeny of a genetic cross,
it can be determined which regions of the genome came from which parent.
Restriction polymorphisms can also be employed for genetic mapping
studies, although these have proved more cumbersome in Plasmodium, in
part because of the high A+T content of the genome. Careful association
of microsatellite patterns with phenotypic or genetic markers permits the
construction of an integrated genetic and physical map, linking individual
microsatellites to particular regions of specific chromosomes. In addition to
their utility for genetic mapping, including the analysis of Quantitative Trail
Loci (QTL) for specific phenotypes (Ferdig and Su, 2000; Wootton et al.,
2002), microsatellite markers are also extremely useful tools for population
surveys.
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2.3. Expressed Sequence Tags

Expressed Sequence Tags (ESTs) are sequences obtained from reverse-
transcribed mRNAs (cDNAs). As such, they can be used to determine gene
structure (exons and introns), and identify open reading frames that are likely
to encode protein sequences. By focusing on transcribed sequences and
minimizing the problems associated with splice-site prediction, EST projects
are extremely cost-efficient, delivering a large number of protein predictions
for relatively small cost. Moreover, the abundance of EST sequences obtained
for individual genes provides a crude indication of transcript abundance in
the original library. EST sequences are currently available from several
Plasmodium cDNA Tlibraries, representing various life cycle stages and
species. While the collection and analysis of such data has been discussed
elsewhere (Ajioka et al., 1998; Li et al., 2003), several issues likely to impact
on bioinformatics experiments are worth considering here.

= Because EST sequences are derived from specific libraries, they

represent only the individual strains and life-cycle stages from which
these libraries were generated, and the transcripts produced by those
parasites. Thus, while random sequencing of genomic DNA can in
theory approach complete representation of the parasite genome, no EST
project is likely to provide a complete catalog of all genes. Representation
is sometimes enhanced, however, by using normalized libraries in which
highly abundant sequences have been suppressed (using a variety of
strategies).

»  EST abundance may be able to provide a crude estimate of relative

transcript abundance, but such estimates are likely to be biased by library
amplification, and completely invalid in normalized libraries (depending
on the method employed). In general, hybridization with RNA, RT-PCR,
SAGE, and microarray analysis (see below) provide more suitable
methods for transcript profiling.

= EST sequences are often incomplete. To facilitate gene discovery, most

EST projects use libraries of directionally-cloned cDNAs (although note
that up to 30% of inserts may be cloned in the inverted orientation),
and produce only a single sequence read from the presumed 5' end of
the cDNA. Because many cDNA clones do not represent full-length
mRNAs, however, the start of the sequence may not provide the
transcript initiation site, especially for long mRNAs. A single EST
sequencing reaction typically yields ~350 nt, and is therefore very
unlikely to provide the complete cDNA sequence. Repeated sampling of
the library often yields multiple overlapping ESTs derived from the same
gene, and clustering of these may yield a longer consensus sequence (see
below), but most of these sequences still remain incomplete.
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= EST sequences are likely to contain a higher error rate than genomic

sequences, for a variety of reasons. For example, because EST projects
focus on gene discovery rather than high-fidelity genome assembly,
individual cDNAs are generally sequenced only once, although transcripts
derived from the same gene may be sequenced multiple times in a given
library, as noted above. Clustering of ESTs can help to extend sequence
length and reduce error, but inclusion of data from multiple isolates
may yield an inaccurate consensus whenever allelic polymorphisms
are present. (Indeed, correlation of multiple sequence alignments with
strain information provides an excellent source of microsatellite and
SNP markers for genetic analysis.) It is therefore important to distinguish
between individual ESTs and consensus sequences, and to recognize
that even sequences derived from the consensus of many ESTs may be
incorrect.

+ Differentially-spliced genes — while far less common than in metazoan

species — are nevertheless well known in Plasmodium, and it is important
to recognize when differentially-spliced transcripts derive from the same
gene, as opposed to paralogous genes or strain-specific allelic variants.
Note, however, that incomplete intron excision is quite common,
producing many cDNAs that are unlikely to be fully translated.

*  As with genomic sequences, EST libraries may contain a low frequency

of contaminating sequences. The lack of redundant sequencing
makes it difficult to distinguish rare transcripts from contaminating
DNA, however; putative transcripts should always be validated by
comparison with genome sequence (when available) and hybridization
with genomic DNA. cDNA libraries may also be contaminated with
incompletely processed sequences, and with genomic DNA, yielding
apparent transcripts that are unlikely to be translated and may not even
be transcribed. This is particularly problematic for Plasmodium, where
the high A+T content may lead to false priming by oligo-dT. In addition,
an early Genome Survey Sequence (GSS) project using mung-bean
nuclease libraries to provide a ‘genes-first’ approach to sequencing of
P. falciparum DNA produced sequences that were initially mislabeled as
ESTs.

*  Because EST sequencing is often a continuing project, the identifiers

associated with assembled sequences for an individual gene may change
frequently, producing considerable confusion. In practical terms, it is
often most convenient to find the new consensus sequence (and name)
via a BLAST query with the old sequence. It is also critical to note the
data release date and database version on which any analysis is based.

When ESTs are analyzed in bioinformatics experiments, it is often
necessary to understand how the data were generated in order to interpret
the results correctly. What species, strain, stage? Is the library directional?
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amplified? normalized? How were contaminating sequences removed? How
were individual ESTs assembled? How many sequences are represented in an
individual cDNA assembly, how well are they aligned, and how deep is the
alignment as a function of position?

2.4. SAGE Tags

SAGE (Serial Analysis of Gene Expression) was developed to provide a
“snapshot” of mRNA abundance at a given time in a given cell or tissue
type (Velculescu et al., 1995). Rather than conducting a full-scale EST
project, sequencing ¢cDNAs in their entirety, each EST is reduced to a
short oligonucleotide sequence tag, normally near the 3’ end of the gene.
These tags are then ligated into large concatemers, so that an individual
sequencing reaction can identify tags derived from dozens of individual
c¢DNAs, rather than the single cDNA represented by an individual EST
sequence. Computational analysis is used to determine which gene/mRNA
matches which specific SAGE tag. Once again, the high A+T content of
the Plasmodium genome poses a problem. For example, the GC-rich 10mer
SAGE tag GGTTCAGGGT is predicted to occur 0.59 times by chance in the
P. falciparum genome (based on the observed 80% frequency of A+T), while
the AT-rich tag ATCATATAAG is predicted to occur 150 times by chance
alone. Thus, the mapping of SAGE tags and other short oligonucleotides
to the P. falciparum genome may be a “one-to-one” or a “one to many”
relationship, but when SAGE tags are combined with other data (gene
predictions, EST sequences, BLAST similarities, etc) it is often possible to
determine the true sites of expression (Munasinghe et al., 2001; Pleasance et
al., 2003) .

2.5. Transcript Expression Profiling

Several types of microarrays may be employed to examine the expression of
many individual genes in parallel. All of these methods involve immobilized
gene-specific nucleic acids: genomic DNA clones, cDNA clones (ESTs),
or synthetic oligonucleotides. Plasmid clones can casily be isolated‘from
genomic libraries, and libraries constructed using mung-bean nuclease
(which cleaves preferentially in extremely AT-rich DNA) may favor
clones containing individual genes or gene exons. cDNA clones can be
isolated from plasmid libraries as well, and offer the advantage of being
unequivocally derived from individual mRNAs (subject to the quality of
the library), although they are unlikely to represent the genome as a whole
— with highly-expressed genes represented many times, and other genes not
represented at all. All clone-based reagent sets are problematic from the
standpoint of quality control: reliably propagating, quantitating, and tracking
thousands of individual plasmids is a daunting task. As a result, most array
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projects have now moved to oligonucleotide-based microarrays, provided
that effectively complete genome sequence is available — as is indeed the
case for P. falciparum (and many related species).

Two alternative formats for oligonucleotide-based microarrays are in
common use. In the first, oligonucleotides are synthesized in 96- or 384-well
format, and robotically spotted onto glass slides. This format offers several
advantages, including the ability to design custom microarrays tailored to
individual experimental needs, and the ability to design new probes to take
advantage of improved genome annotation and new experimental approaches.
Disadvantages include the cost of oligonucleotide synthesis (or purchase), the
potential for error in reagent generation/storage/tracking, and difficulties in
maintaining the spotting robots for reproducible array production (although
many large research centers now support microarray facilities).

Alternatively, oligonucleotides can be synthesized directly on the
microarray, using proprietary photolithographic methodology. This format
offers the ability to print features at higher densities (typically 500,000
features/chip, vs ~15,000 for glass slide arrays), with greater reproducibility.
Disadvantages include the proprietary nature of the technology involved, the
cost and inflexibility of photolithographic array design, and the high cost of
arrays (obtainable only through the Affymetrix Corporation), and the need for
sufficiently large orders to justify printing. Facilities for reading microarrays
in both formats are generally available at most large research centers.

For P. falciparum, glass slide microarrays have been produced
containing cDNA sequences (Mamoun et al., 2001), spotted mungbean
nuclease fragments (Hayward ef al., 2000), and 70mer oligonucleotides
representing the vast majority of predicted genes in the genome (Bozdech
et al., 2003a; 2003b). Oligonucleotide probe sets for P. falciparum are now
available commercially (www.giagen.com/arrays/oligosets_malaria.php).
An Affymetrix chip containing shorter oligonucleotides for nearly every
predicted exon in the P. falciparum genome, as well and non-coding and
opposite strand regions (at a lower frequency) has also been designed (Le
Roch er al., 2002; 2003). Many of the resulting expression data sets have
been deposited in the Plasmodium Genome Database (http://PlasmoDB.org),
and the sequences used to create these arrays or oligos have been mapped to
the P. falciparum genome. For example, the expression profile for the major
merozoite surface protein (MSP1) of P. falciparum is shown in Figure 1.

An in depth discussion of all bioinformatics aspects of microarrays is
beyond the scope of this chapter, but as with all studies producing genomics-
scale datasets, it is critical that experiments be well-controlled, reproducible,
and understood by any user hoping to make sense of this data, particularly
as data from different types of experiments are often stored and accessed in
different ways. For example, in comparing two whole-genome expression
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Figure 1. Browsing P. falciparum genes in PlasmoDB 4.1. Multiple alternative views arc
available for individual genes. The “expression” view of MSP1 (merozoite surface protein
1; PF11475w) presents information on RNA and protein expression, including data from
both Affymetrix and glass-slide microarrays, and proteomics analysis by MS/MS. See text
for further details.
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profiling datasets for P. falciparum that are accessible via PlasmoDB, the
“Scripps/GNF” Affymetrix array (Le Roch et al., 2002; 2003) provides absolute
expression values (Figure 1, graph la) for seven time points spanning the
intraerythrocytic life cycle (using two independent synchronization methods),
in addition to data on expression in sporozoites and gametocytes. The spotted
glass slide arrays reported in (Bozdech et al., 2003a; 2003b) use a different
parasite strain (HB3 vs 3D7), and provide higher time resolution: 48 hourly
time points across the intraerythrocytic life cycle. Because experimental
variability is high for glass slide arrays, expression values are normalized to a
common pooled control, yielding a graph of expression induction rather than
absolute values (Figure 1, graph 2a). In order to enable direct comparison
between these two microarray platforms, the Scripps/GNF dataset is also
presented in the form of of induction ratios (Figure 1, graph 1b), and absolute
expression levels are presented as a percentile of all genes in each experiment
(Figure 1, graphs 1c and 2b). Both experiments indicate high abundance and
strong up-regulation of steady-state MSP1 transcript levels in late schizonts.
Raw data can also be downloaded, and links are provided to the home sites
for all relevant data sources. All probes are mapped to the parasite genome,
enabling convenient comparison.

2.6. Proteomics

The production of large-scale proteomic datasets has been made possible by
technological advances in mass spectrometry, combined with the availability
of complete genome sequences. Analysis of complex protein mixtures (as
opposed to purified proteins) and the determination of putative peptide
sequences (as opposed to the masses of proteins or peptide fragments), permits
comparison with predicted sequences emerging from genome sequencing
projects (although the scale of whole genome computational analysis can
be problematic). To date, two major genomic-scale proteomic analyses have
been published for P. falciparum (Florens et al., 2002; Lasonder et al., 2002).
Such studies provide a snapshot of the protein repertoire at a given time, and
have permitted recognition of >40% of all annotated proteins in the parasite
genome.

As with the analysis of microarray data, it is imperative to understand
the nature of the data obtained, and limitations of the available results.
Because peptide recognition depends on gene predictions, protein sequences
associated with incorrectly assigned gene models will not be recognized.
Searches of all open reading frames in the genome may lead to the discovery
of a gene that was expressed but not predicted in the genome sequence. Even
when gene models are accurate, many factors may influence the ability to
detect peptide sequences, including protein abundance; post-translational
modification; efficiency of solubilization; proteolytic digestion, and
ionization; etc, Thus, positive data is likely to indicate peptide presence, but
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negative data is far less informative. Note also that analyses conducted to
date provide no reliable quantitation of abundance, although the number of
peptides recognized may provide a crude indication: MSP1 was identified in
all samples, but was represented by far more peptides, covering far more of
the gene, in merozoites (Figure 1, graph 3).

3. Data Repositories and Organization

The Plasmodium Genome Database, PlasmoDB (http://PlasmoDB.org),
provides the largest and most comprehensive single collection of
Plasmodium-related data (Bahl et al., 2002; Kissinger et al., 2002). This
community resource currently houses genome sequence for several
Plasmodium species; multiple alternative gene predictions: automated and
curated annotation, including controlled vocabulary Gene Ontologies; GSS
and EST sequences; SAGE data; mungbean, cDNA and oligonucleotide
microarray data based on both glass slide and Affymetrix platforms; MS/MS
proteomic data; microsatellite and physical mapping data; and comparative
genomic analyses. Much of the data available in PlasmoDB is also available
on CD-ROM. Depending on the application, the reader will also benefit from
various other Plasmodium and apicomplexan parasite resources, as discussed
below. Table 1 summarizes sites where data are stored and often available
for download. Table 2 lists sites supporting bioinformatics analysis and data
queries.

Each of the sequencing centers involved in the generation of the
P. falciparum genome (the Sanger Institute, Stanford University, and The
Institute for Genome Research; TIGR) maintains a BLAST searchable
website and an FTP download site where sequences generated by that
center may be obtained. Gene predictions and features may be queried at
the Sanger Institute via GeneDB. TIGR maintains an EST-based gene index
(Quackenbush et al., 2001) for P. falciparum and P. yoelii (as well as several
other apicomplexan parasites), offering a non-redundant view of transcripts
analyzed computationally to provide information on potential cellular roles
and function. In order to illustrate the logical sequence of events required
for developing a bioinformatics resource, Box 1 summarizes the stratggy for
Gene Index production.

Several databases are dedicated to metabolic pathways and drug
discovery. The “Malaria Parasite Metabolic Pathways” site (Table 2) provides
curated graphical snapshots of Plasmodium metabolic processes organized
by pathway. Direct links are provided from each enzyme E.C. number to
Expasy-NiceZyme views, Brenda (Schomberg et al., 2002) and PlasmoDB
databases. PlasmoCyc contains graphical and searchable representations of
P. falciparum metabolic pathways, and a whole-cell overview of metabolic
pathways along with tools for between-species comparisons. The resource
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Box 1. The TIGR Gene Index Protocol for Assembly of ESTs and Transcripts
(http: //www.tigr.org/tdb/tgi/definitions.html)

Preparation of EST data
»  Extract sequences from dbEST and subject to quality control screening (vector,
E. eoli, polyA, T, or CT removal, minimum length = 100 bp, < 3% N).

Preparation of transcript (ET) database

*  Extract all sequences from the appropriate division of GenBank.

*  Discard non-coding sequences.

*  Save cDNAs and coding sequences from genomic entries.

*  Store sequences and related information in Expressed Gene Anatomy Database
(EGAD).

e Make curated ET data set available as a multiple FastA format file (see EGAD
main page).

Assembly

*  Combine cleaned EST sequences and non-redundant transcript (ET) sequences.

*  Assemble sequences into contigs using Paracel Transcript Assembler Program.
TCs are consensus sequences based on two or more ESTs (and possibly an
ET) that overlap =40 bases with 294% sequence identity (strict criteria help
minimize creation of chimeric contigs).

*  Assign contigs a TC (Tentative Consensus) number. TCs may comprise ESTs
derived from different tissues.

*  Assign best hits for TCs by searching against a non-redundant amino acid
database (nrAA) using BLAT.

*  Select and display top five hits (based on score) for each TC.

Caveats

e TCs are only as good as the underlying ESTs; unspliced or chimeric ESTs will
produce aberrant TCs.

e The TC set contains some redundancy because sequences will not be combined
unless they exhibit a high % identity and match end-to-end.

* TS directionality should not be assumed.

*  Not all TCs contain protein-coding regions.

can also display individual enzymatic reactions with substrate and reactant
structures, cellular localization, information regarding the association of
protein subunits into complexes and a list of predicted drug targets (with
links to the papers describing them).

Protein annotations have been used to search the protein structure database
(PDB), and several P. falciparum protein structures have been modeled and
are viewable. Microarray data are available from several sources (Table 1)
and the UCSF site provides extensive viewing and analysis capabilities
(Table 2). DNA structural analyses (repeat content, DNA “bendabilty”, etc.)
have been calculated for P. falciparum and can be viewed using the genome

atlases maintained at the Center for Biological Sequence Analysis (CBS).

The WHO/TDR Malaria database contains searchable genome annotation
and an electronic repository of Plasmodium strain information, antigen
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and other multiple sequence alignments, and an extensive malaria antigen
literature database; this database is also available on CD-ROM.

The Malaria Research and Reference Reagent Resource Center, MR4
(Adams et al., 2000) is both an electronic and physical repository for quality
controlled malaria-related reagents and information. Registered users can
obtain parasites, mosquito vectors, antibodies, antigens, clones and gene
libraries. MR4 resources are searchable via the web and many reagents and/
or genes have been linked to PlasmoDB (and vice-versa).

Dozens of other databases are extremely useful for Plasmodium research,
While it is impossible to describe all of these sites here, Tables 1-3 provide
a compendium of several such resources, and most are described in detail
in the annual database issue of Nucleic Acids Research (Baxevanis, 2003).
Useful databases include (but are not limited to): the NCBI GenBank and
EMBL databases, containing large sequence repositories and a variety
of tools for accessing these data; Anopheles, mouse and human genome
databases (Table 3); the SMART (Simple Modular Architecture Research
Tool) database for examining protein domain architectures; the BIND
(Biomolecular Interaction Network Database) of molecular interactions
culled from the literature and high-throughput analyses; the PFAM (Protein
Families) database, containing a collection of Hidden Markov Models
(HMMs) used to screen protein sequences and identify protein family
members based on conserved patterns; and the ProDom and InterPro protein
domain databases for searching and identifying protein domains.

The data described above is stored in a variety of formats. “Flat file”
text documents can be opened in a word processor or spreadsheet program,
and are therefore easy to share. Search functions are generally limited to
“Find” commands to locate key words, and/or “Sort” commands to arrange
and/or manipulate data. Even very large datasets, such as BLAST databases
are typically stored in flat-file format. Other database types — relational
and object-oriented — permit more sophisticated functions, and are usually
managed by a database management system (DBMS) such as Oracle, DB2
to keep track of data access, deposition, security etc. Such management
systems keep track of data records and requests for their access, preventing
(for example) simultaneous withdrawal of checking account funds in excess
of the amount on deposit.

3.1. Relational Databases and Queries

Relational databases store data in tables that are designed to accommodate
specific data types, as shown in Figure 2. For example, one table might
contain the names of all students in a school, another table might contain
the names of all professors, a third the names of all the classes offered, and
a fourth, the list of rooms in which classes are taught. Each of these tables
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_ Professors
Professor 1D
Garnham, P
Trager, W
one-to-many
relationship
. A
| Classes _Class Registry
Class ID Class ID
Professor ID Student ID
Room ID
Malariology 101
Databases 102 N\
Genomics 101
D\
many-to-one many-to-many
refationship relationship
~ Rooms | Students
Room ID Student ID
Biology 6562 Kissinger, J
Lab 2120 Roos, D
CS 1205 Waters, A

Figure 2. A relational database schema. Each data type (Professors, Classes, etc) is
stored in a distinct table. Conceptually, tables contain both columns and rows. Tables can
hold multiple entries for each data type: a unique identifier ID, the data itself (e.g. names
of professors), and identifiers linking data in one table to an ID in another. Tables are
associated with each other according to the type of relationship (one-to-one, one-to-many,
many-to-one, many-to-many). In this example, each class is taught by a single professor,
but each professor may teach multiple classes. Classes have multiple students, and
students have multiple classes. An additional Class Registry table links each student to
each class. Each class is associated with a single classroom, but an individual classroom
may be used for multiple classes. Professors are not directly linked to rooms or students,
but a relationship is defined via the classes that they teach.

can accept certain values (e.g. names consisting of alphabetical characters
up to 50 characters in length, or alpha-numeric codes like Biology 6562 for
classroom location). Relational databases, in addition to storing the data in
defined tables, also relate the data contained in the tables to one another. For
example, in the example shown, professors teach specific classes, classes
have students enrolled in them, and classes are taught in specific classrooms.
These relationships are not random, but clearly specified: each class has only
one classroom, only one instructor, but multiple students. Students enroll
in classes, and classes are taught in classrooms, but there is no direct link
between students and classrooms; these two tables are only related via the
classes offered. If the appropriate relationships are specified in the design of
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the database, then users of the database can ask questions (called queries) that
require data from multiple tables. For example, one might want to know all
classes taught by professor P.C.C. Garnham, all classes taught in the Biology
6562 classroom, or the names of all students enrolled in Malariology 101.

Extending this analogy to consider the very diverse kinds of biological
data relevant to Plasmodium parasites, database tables can be generated to
hold genomic sequences, EST sequences, SAGE tags, translated protein
sequences, protein domains, peptides identified by MS/MS, and microarray
oligonucleotides, etc. Relationships can then be defined between these tables:
protein domains and peptides determined by MS/MS may relate to particular
EST sequences or gene models; oligonucleotides from expression studies
can be related to predicted or annotated genes; these genes can be related
to proteins and these proteins can be related to function via Gene Ontology
classifications; etc. The PlasmoDB database is built on a relational schema
(Genomics Unified Schema; GUS) that currently contains more than 200
tables (Davidson et al., 2001).

3.2. Controlled Vocabularies

Meaningful comments or data analysis requires controlled vocabularies — a
standard set of terms that are applied to equivalent genes or processes. For
example: it is often necessary to search for a gene by name, but what is that
name? MSP-1, Merozoite Surface Protein-1 and PFI1475w are synonymous.
In order to create automated systems for comparison it is necessary to agree
upon a common vocabulary that is used for all organisms, such as the enzyme
commission (E.C.) classification system.

Gene Ontology (GO) terms provide another example of controlled
vocabularies. GO terms are created and maintained by the “Gene Ontology™
Consortium (http://www.geneontology.org), as hierarchies of increasingly
generalized terms around the concepts of “Molecular Function”, *Biological
Process”, and “Cellular Component” (Ashburner et al., 2000). By design,
these definitions are sufficiently flexible that they can evolve as new

information becomes available.

For example, GO terms for MSP-1 include:

»  Biological process:
o GO:007154, cell communication
o GO0:0030260, cell invasion

*  Cellular component:
o GO0:0005623, cell
o GO:0016020, membrane

*  Functional assignment: Not yet defined

Kissinger and Roos
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Each of these assignments was made by an annotator and comes with an
evidence code describing the basis used when assigning the term (in this case
all are labeled “TAS”, or traceable author statement). Other GO evidence
codes include: IC, inferred by curator; IDA, inferred from direct assay;
IEA, inferred from electronic annotation; IEP, inferred from expression
pattern; IGI, Inferred from genetic interaction; IMP, inferred from mutant
phenotype; IPI, inferred from physical interaction; 1SS, inferred from
sequence or structural similarity; NAS, non-traceable author statement; ND,
no biological data available; and TAS, traceable author statement. See http:
/lwww.geneontology.org/doc/GO.evidence.html for full explanation,

Once GO terms are applied to gene products, many of the problems
related to data searching, integration and comparisons become much
simpler. Searches can be performed using GO terms, and genes can easily
be related — even across species boundaries —using GO identifiers. Evidence
codes provide users with a clear statement as to the origin and confidence
associated with each assignment. The combined information provided by GO
term classifications and their evidence codes informs database users of what
is known about any given assignment.

3.3. Data Integration

Data integration is the process of relating one type of data to another. As a
simple example, gene annotations are related to a particular genome sequence,
and protein features to protein sequences. Of course, integration can also
involve more diverse data types: sequences may be related to physical
maps, microarray oligonucleotide probes, or proteomic fragments. Defining
data integration linkages is a laborious task, requiring extreme attention to
detail. One common type of data integration performed by researchers on a
regular basis is the association of gene names (and hence putative function)
with a given sequence. Such relationships are often inferred on the basis
of similarity to other sequences or the presence of particular motifs, in
which case, a similarity search (e.g. BLAST) may provide the information
necessary to link two diverse pieces of data. Sequence similarity searches are
also commonly used to relate EST sequences to genomic sequences.

Applying such processes to genomic-scale datasets can yield very large
networks of integrated data. Since nearly all data types can be related to the
genome sequence either directly or indirectly, the genome sequence becomes
a “bridge” that allows diverse data types to be integrated. Recall the database
example provided in Figure 2. While professors are not directly related to
classrooms, these distinct data types are related and integrated via the classes
offered. Applying the same reasoning to genomic data, it is possible to link a
proteomic mass profile to microarray expression levels, along the following
path: collision-induced ionization of peptide fragments produces masses,
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the difference between these masses corresponds to a particular amino acid
sequence, this sequence can be found in the data set of predicted proteins,
predicted proteins are related to open reading frames, mRNAs are related via
gene predictions to regions of genomic sequence, portions of the genomic
sequence may correspond to cDNAs or oligonucleotides on a microarray,
and elements on this microarray are linked to transcript expression levels,
completing the path.

Controlled vocabularies have been developed for a variety of data types,
and greatly facilitate the establishment of relationships and integration of
diverse data types. With the advent of GO terms and motif identifier numbers
and names, these data can be used to quickly relate homologous genes
across species, and to identify all predicted proteins with a particular domain
arrangement. Further integrating ProDom motif terms with GO identifiers
may be able to ease the laborious task of assigning GO terms (Schug et
al., 2002): if protein motifs in a predicted sequence can be associated
with ProDom terms, and a particular motif order and/or combination can
be associated with a GO terms, then automated integration could facilitate
annotation. Other data types require unique solutions, such as establishing
the locations of all potential SAGE tag origination sites, or the location
of enzyme restriction sites that would give rise to the fragments (+ error)
observed in the optical mapping experiments. Making the data from such
analyses accessible through a relational database allows the full power of the
integration to be realized.

Great care is essential in defining database schema architecture, and
loading data into the database, however, as errors in data integration (such as
applying gene prediction coordinates from one genome assembly to another)
can be disastrous. Such challenges are a particular concern in a highly
networked database architecture where the underlying data is constantly
changing. When the reference genome sequence changes, for example, all
data must be re-integrated. To minimize potential problems, it is important to
record version numbers for each and every data source utilized. This subject
is discussed more fully below.

3.4. Working in a Mixed Database World

The term “database” can be applied to many forms of collected data that can
be downloaded, browsed, analyzed and/or queried. Tables 1-3 list many of
the web-accessible data sources and analysis tools available for Apicomplexa
and some of their host and vector species. In general, web sites incorporating
search tools where user-specified text (or items from pull-down menus) can
be used as search terms are likely to be based on a relational architecture.
Such databases may indicate they were built using Oracle, Sybase, mySQL
or PostgreSQL. Any database that indicates queries can be constructed using
a Structured Query Language (SQL) is relational.

Kissinger and Roos

It is often impossible to identify the functionality and/or data types
available at any given site without exploring the site and reading the
introductory and/or tutorial pages, as database *“look and feel” is more
an indication of artistic style than functionality. The appearance of a
web-based “front-end” may be held constant, even when the underlying
database architecture is changed. For example, many aspects of PlasmoDB
initially handled by smaller flat-file databases have become incorporated
into the GUS relational schema. Conversely, changes in the appearance
of a web-based “front-end” need not reflect any change in the underlying
architecture. The appearance of the NCBI GenBank and PlasmoDB have
both changed over the years, while maintaining similar core services and
taking on additional functionalities; a little exploration reveals how new
tools have been implemented. Similarly, quite different interfaces may
be used to access similar databases. For example, the GUS architecture
employed for PlasmoDB has recently been adopted by the Sanger Institute
to drive GeneDB, providing access to the various organisms sequenced and
annotated by Sanger’s Pathogen Sequencing Unit. This development should
greatly facilitate the development and exchange of software for browsing,
visualizing, analyzing, mining and querying data.

Because genomic datasets change frequently, databases — like the web
pages used to access them — typically display version numbers or release
dates, which should be noted in any publications that depend on these
resources, and any communications aimed at identifying problems in data
access, analysis, or integration. It is not uncommon to discover that different
identifiers are used for identical data stored in different databases, or that
the same identifiers may be used for different data in different databases, or
different releases of the same database. With the ever-expanding availability
of internet resources, the possibilities for confusion are endless! It is therefore
critical that bioinformatics researchers keep track of information on data
release dates, database versions, etc, and make this information available in
any publications (print or electronic) that may result. It is equally important
that database developers provide resources that allow published data to be
tracked and updated (enabling the correlation of new and old EST assemblies,
for example), or at least maintain the ability to access old release data.

Particular attention should be paid to the specific data sets and analysis
tools provided in the various available databases. For example, NCBI
BLAST and Washington University BLAST (WU-BLAST) are different
implementations of the same local sequence alignment algorithm; both work
well, but they employ different default settings, arguments and DNA scoring
matrices, and will therefore yield slightly different results. Most large genome
databases provide a combination of human curated and computationally
generated automated analyses. The availability of such diverse data types
is what makes bioinformatics analysis possible, but it is important to know
exactly how the data have been curated and/or analyzed (see Box 1 for an
example).
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4. Queries: Powerful Tools for
Developing Bioinformatics Prowess

Although most databases permit the data that they house to be examined (for
example, scrolling through all genes on P. falciparum chromosome 1), and
many provide tools for data analysis (e.g. BLAST searches against P. vivax
sequences, or listing all abundant transcripts in gametocytes in a particular
experiment), the real power of a relational database lies in the ability to
form integrated queries that depend on the relationships between multiple
data types, as defined in the database schema. A wide range of queries are
available in PlasmoDB, including queries related to

+  curated or automated annotations (including GO function, process and
component)

*  chromosomal location

«  results from BLAST searches against GenBank and/or other Plasmodium
species

+  DNA sequence features: low complexity sequence, AT content, coding
potential, etc

*  gene structure (intron-exon architecture)

= protein sequence features: secretion and organellar targeting signals,

transmembrane domains, Pfam/ProDom/other motifs, secondary
structure, predicted CD8 epitopes, etc

= the presence of strain-specific nucleotide and/or amino acid sequence
polymorphisms

«  expression data: EST or SAGE abundance, RNA expression levels/
induction/timing (on several platforms), evidence for protein expression
(from MS/MS analysis)

«  phylogenetic cross-comparisons (in comparison with other Plasmodium
species, other Apicomplexa, other eukaryotic species, etc)

= availability of a predicted protein structural model

« involvement in specific metabolic pathways

«  availability of reagents

In developing a successful query, it is crucial to translate biological
knowledge into computationally-accessible terms. For example, a query, for
“drug targets” is not particularly well-defined, but a query for enzymes for
which a structural model is available and that are known to be expressed in
the erythrocytic stages at both the RNA and protein level, can take advantage
of GO terminology, the Plasmodium protein structural model database, and
both microarray and proteomics datasets (Kissinger ef al., 2002).

To pursue a vaccine-related example, one might wish to look for surface
antigens based on the presence of a predicted secretory signal sequence
(and/or one ‘or more transmembrane domains), as shown in Figure 3. In
addition, one could look for antigens shared between P. falciparum and
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Figure 3. Querying the curated annotation of P. falciparum genes in PlasmoDB 4.1 for
signal peptides (identified using the neural net work program SignalP) yields 651 proteins
that are predicted to be secreted. Because accurate prediction of secretory signal sequences
requires accurate assignment of the translational initiation, it is likely that this query
misses many secreted proteins. Further refinements might include searching alternative
gene models, or including proteins with predicted transmembrane domains.
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Figure 4. Phylogenomic cross-comparisons with other genome sequence data can identify
putative orthologous genes (Li ef al., 2003b), and genes that are phylogenetically-restricted

in their distribution (Ajioka

etal., |

998). In seeking candidate vaccine targets, one might

wish to identify antigens that are highly conserved between P. falciparum and P. yoelii,
but not shared with the human host, This query yields 2260 hits (>40% of the parasite

genome).

Kissinger and Roos

91|

Vaccine Antigen Query 3:
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Figure 5. In seeking a

a blood-stage vaccine, one might wish to prioritize antigens that

are abundantly expressed in the extra-erythrocytic merozoite stage. This query focuses

on experiments conducted by Le Roch ef al. (2003b) using an Affymetrix microarray 1

examine expression across the erythrocytic life cycle, and seeks genes that are among the
Lop 5% in steady-state transcript abundance during late schizogony (many other expression

datasets and query strategies can also be envisioned).
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Figure 6. Using the ‘Query History’ feature of PlasmoDB to combine the queries illustrated
in Figures 1-3 identifies only 26 genes exhibiting all three desired characteristics: antigens
that are secreted, restricted to Plasmodium species, and abundantly transcribed just before
merozoite emergence. Among these genes are both of the leading erythrocytic vaccine
candidates: MSP1 and AMAL.
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P. yoelii, but absent from the human genome, as shown in Figure 4. One
might further wish to restrict consideration to abundant transcripts expressed
in late schizonts, based on the GNF photolithographic array, as shown in
Figure 5. Each of these queries yields a list of several hundred (or thousand)
genes, but exploiting the “History” function of PlasmoDB permits taking the
intersection of these queries, yielding 26 hits (Figure 6) ... including two of
the leading vaccine antigens now undergoing trials (MSP1 and AMA1). The
remaining proteins (mostly annotated as hypothetical proteins) would be
interesting to explore as candidate vaccine antigens.

Of course, there are many other ways to configure this search, including

refining the desired expression pattern, considering chromosomal location,

evaluating potential efficacy, or seeking for evidence for positive selection
from population genetic studies, etc (although the data is not yet in place for
all of these queries). The point of this exercise is not that analysis in silico is
ever likely to take the place of laboratory analysis (particularly in the case of
vaccine antigen discovery!) Rather, the point is that computational tools can
rapidly filter available options, providing each gene in the dataset with a set
of credentials that can be assessed for potential vaccine efficacy. Overall, the
goal is to let computers do what computers do well (integrating and analyzing
large-scale datasets), and let people do what people do well (experimental
validation at the laboratory bench).

4.1. Future Directions

Plasmodium bioinformatics resources are growing daily, and we can
anticipate the incorporation of new data at an ever-accelerating rate. The
year following completion of reference sequences for P. falciparum and
A. gambiae saw the release of effectively complete genome sequence for
P. yoelii (and other apicomplexan parasite species), extensive sequence
information for several other Plasmodium species, whole-genome RNA and
protein expression data (on several platforms; Florens et al., 2003; Le Roch
et al., 2002; 2003; Bozdech et al., 2003a; 2003b), and new algorithms for
cross-genome comparisons (Li er al., 2003b).

The coming year is likely to bring further sequence data for a field
isolate of P. falciparum and additional Plasmodium species (and other
apicomplexan parasites); revised and updated annotation for P. falciparum
and P. yoelii; next-generation computational analyses of these genomes,
incorporating new algorithms for orthologous group identification; syntenic
analysis and other comparisons across species boundaries; genome-wide
SNP markers for genetic studies; incorporation of greatly explanded EST
datasets, representing several life-cycle stages; additional transcript profiling
data, including studies on additional strains, life cycle stages, and treatments;
additional proteomics data, including quantitative data from various life
cycle stages, and preliminary analysis of protein modifications.
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In future, we can also anticipate the availability of additional data types, from
population genetic data, to clinical records, to structural genomics results, to
publications records. The computational challenge will be to integrate these
emerging data types with existing database resources, and develop analysis
tools for effective database mining. The biological challenge is to consider
how to effectively translate biological questions into computationally
accessible terms. What questions do you want to ask?

«  What features characterize potential drug targets, vaccine antigens,
diagnostics?

+  How to get a handle on understudied life cycle stages?

«  How to map virulence genes and other loci of interest?

+  What features define parasite proteins likely to interact with the red cell,
liver, and host endothelium?

= What genes to target for genetic knock-outs, knock-downs, etc?

+  How best to explore parasite population biology?

+ How best to compare P. falciparum with other Plasmodium,
apicomplexan, and other eukaryotic pathogen species: gene families,
taxonomically- or functionally-restricted genes?

*  What information can we usefully extract from the P. vivax genome?

+ How to exploit genomic information for host and vector species
(Plasmodium vs. human, mouse, Anopheles)?

«  What information is of greatest interest for studying eukaryotic biology
and evolution?

+  How best to'link genomics data to publication records?

*  How to integrate clinical data?

*  What new ‘omics’-scale datasets would be useful?

5. Concluding Comments: Bioinformatics Research,
and Where to Look for Further Assistance

Now is an exciting time to be engaged in malaria research. The availability
of genome sequences for the parasite host and vector, along with emerging
expression analyses and anticipated population data, are providing
unprecedented insight into the biology of Plasmodium and its interaction
with its hosts. Utilization of this data requires proper storage, retrieval,
analysis and integration of these and new data types.

Databases offer a tremendous asset for biomedical research, but
they do not obviate the need for critical thinking; the same analytical
approach is required for bioinformatics experiments conducted in silico
as for experimental work conducted at the laboratory bench. Problems are
likely to arise whenever the exact nature of the data type or bioinformatics
analysis tool is not understood. Database users should therefore endeavor
to fully explore database resources, and should not be reluctant to contact
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the database developers whenever questions or problems arise that are not
clearly explained in the documentation provided.

Bioinformatics assistance is readily available in multiple forms. Many
of the major databases provide tutorial, “How To” and “Frequently Asked
Questions” help pages. A few minutes spent reading this material can save
hours of frustration or misuse/misinterpretation of the data contained in the
database. If questions or doubts still remain, contact the database directly
'via e-mail. Clearly state your question(s), referring to the exact pages or
tools, your computer platform (Mac, Windows, Unix) and browser type
and version. Many “bugs” are platform- or browser-specific. Explanations
of specialty databases can be found in the annual Nucleic Acids Research
database issue published each January. Tutorials and in-depth explanations of
analysis tools can usually be found on the tool’s web site or in bioinformatics
books. Classes pertaining to the use of malaria related resources are
routinely offered by the Malaria Research and Reference Reagent Resource
Center (MR4 - http://www.malaria.mr4.org) and the WHO/TDR (http:
/iwww.who.int/tdr/). Workshops on how to use malaria-related databases are
offered at several international meetings (Molecular Parasitology, Tropical
Medicine and others), participants are encouraged to check meeting agendas
and contact meeting organizers.

Finally, it is important to keep in mind that computational analysis is
accessible to everyone ... you can do it! The advantage of bioinformatics
research relative to most bench work is that computational experiments can
often be run quickly, at negligible cost, and with no risk of damaging the
starting material or wasting reagents. It should also be noted that there are
usually many, many routes to an answer: many approaches to predicting
genes, many methods for defining protein features, many expression datasets,
many methods for analyzing expression data, etc. As long as the raw data is
available, new analyses and re-analysis can be and should be performed as
new techniques and experimental strategies develop.
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