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Statistical analysis of parasitological data provides a

powerful method for understanding the biological pro-

cesses underlying parasite infection. However, robust

and reliable analysis of parasitological data from natural

and experimental infections is often difficult where: (1)

the distribution of parasites between hosts is aggre-

gated; (2) multiple measurements are made on the

same individual host in longitudinal studies; or (3) data

are from ‘noisy’ natural systems. Mixed models, which

allow multiple error terms, provide an excellent oppor-

tunity to overcome these problems, and their appli-

cation to the analysis of various types of parasitological

data are reviewed here.

Statistical models provide powerful tools to investigate the
biological processes underlying parasite infection and
disease, including exposure and susceptibility of hosts,
and infectivity and virulence of parasites [1–5].

Statistical models in parasitology

Statistical models in parasitology generally have two
objectives: (1) to test hypotheses regarding the significance
of different biological factors on the duration, intensity or
prevalence of a parasitic infection; and (2) to quantify the
effect of these biological factors on a parasitic infection. For
example, does treatment with drug A significantly reduce
the duration or intensity of a parasitic infection relative to
untreated controls and, if so, by how much? Is the presence
of host species B associated with higher parasite burdens
in host species A and, if so, by how much?

A common problem with parasitological data (and
biological data in general) is PSEUDOREPLICATION (see
Glossary), where observations are correlated either in
space or through time [6–8]. These correlations arise, for
example, if samples are taken from the same geographical
location or are taken at repeated time points from the same
individual. Because these observations are not indepen-
dent of each other, testing the significance of treatment
effects or quantifying the size of these effects is confounded
by the difficulty in separating treatment effects from
spatial or temporal correlations [6,9]. Thus, a group of
observations associated with repeated measures on an
individual or with multiple samples from the same site
may be consistently higher or lower than other such
groups of observations owing to innate differences between
individuals or sites [7,8,10]. In addition, observations

within a group might exhibit autocorrelation, i.e. the
degree of correlation between a pair of observations might
be higher if closely related in space or time [8,9]. For
example, in a longitudinal study, one observation might
depend on the previous observation.

How then should pseudoreplication in parasitological
data be dealt with? One approach is to design the
experiment or sampling regime such that only indepen-
dent data are analysed [9]. Suppose, for example, one
wants to follow the progress of a parasitic infection
through time by inoculating hosts with parasites and
monitoring the infection at successive time points. By only
using different hosts at each time point, one can avoid
pseudoreplication entirely. For some types of observation,
such as gut counts of helminths, this will be the natural
design of the experiment if only destructive sampling can
be used. Analogously, it may be possible to design sampling
regimes such that only a single sample is taken from each
site. In some studies, one may take several measures from

Glossary

Blocks : similar observations can be assigned to blocks, where blocks are

assumed to vary randomly from each other.

Error term : random departure of the response variable from that predicted by

either the fixed or random effects.

Fixed effects : the mean predicted value of the response variable over

hypothetical repetitions, independent of the group sampled.

Geometric decrease : a progression that decreases proportionally towards an

asymptote of zero (e.g. 1, 1/2, 1/4, 1/8, etc).

GLM (generalized linear model) : a common type of statistical model used to

analyse independent data with a non-normal error distribution.

GLMM (generalized linear mixed model) : an extension of a GLM that allows

random effects to be modelled.

Linear model : a basic regression model specification appropriate for

independent data with a normal distribution.

Mixed model : a model that incorporates random effects between groups of

observations.

Normal distribution : a symmetrical distribution (‘a bell curve’) widely

applicable to describe the probability distribution of continuous variables.

Overdispersion : where the variance of the response variable is greater than

expected for a particular distribution; for example, for count data, one predicts

the variance should be equal to the mean but the variance of the observed

distribution of helminths between hosts often exceeds the mean.

Poisson distribution : an asymmetric distribution describing the probability of

a certain number of events occurring in a specified space or period of time.

Poisson process : a stochastic process where the accumulation of events

occurs according to an underlying, probabilistic rate.

Pseudoreplication : non-independence of data arising from spatial or temporal

correlations between observations.

Random effects : the consistent departure of the response variable for a group

of observations from that predicted from the fixed effects and are drawn from a

random distribution.

REML (restricted estimate maximum likelihood, also sometimes called

residual maximum likelihood) : a computer algorithm often used to fit the

parameters of mixed models.
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an individual or a sampling site but only be interested in
one general feature of this group of observations, such as
peak parasitaemia in an individual or prevalence of
infection in a village. Using a single measure per group
of observations ensures that measures are independent of
each other and so can be analysed by standard methods
such as LINEAR MODELS, t tests, non-parametric tests and
so on [8,9].

An alternative approach to deal with pseudoreplication
is to use nested analysis of variance (ANOVA) [9,11]. This
method is derived from agricultural experiments where
fields are divided into smaller BLOCKS and the crop within
each block is given the same treatment combination, while
at the same time it is assumed that there is some innate
variability between blocks. By extension to parasitology,
observations from individuals or samples that are similar
to each other and that receive the same treatment
combination can be assigned to the same block. Nested
ANOVAs include an extra ERROR TERM to describe the
innate variation between blocks before determining
whether there is a significant effect of treatment, thereby
separating treatment effects from block effects. A major
consideration of nested ANOVAs is that, in general, for
these tests to be carried out the data must be both
orthogonal and balanced (i.e. all treatment combinations
must be present and all treatment combinations must
have equal numbers of observations). These restrictions
can sometimes be relaxed, for example by randomly
removing data or by bootstrapping data, but usually at
the expense of inflated standard errors [11]. Nested
ANOVAs are therefore ideal in many types of experimental
design, prospective studies or in certain sampling regimes.
For many other situations, where the researcher has less
control over the form of the data to be analysed, regression
methods might be more appropriate in dealing with
unbalanced, non-orthogonal data.

The remainder of this review will concentrate on mixed
regression models as a general approach to deal with
spatial and temporal correlations in parasitological data.
This is not to imply that they represent a priori a better
method to deal with all forms of parasitological data, but
these models certainly provide powerful tools to analyse
many types of data for which the methods above are
inappropriate.

Mixed models of parasite infection

MIXED MODELS are a group of models designed to analyse
observations structured into groups. These models are
defined by FIXED EFFECTS, which are common to any group
of observations one could make, and RANDOM EFFECTS,
which are specific to a particular group of observations
(Box 1). These random effects are coefficients drawn from a
random distribution, generally a NORMAL DISTRIBUTION

[8]. Parameter estimation in these models involves fitting
coefficients for the fixed terms and for the variance
component describing the distribution of the random
effects. Mixed models can therefore be usefully applied
to some types of parasitological data and can help to
overcome problems of pseudoreplication. Where groups of
observations are made, either on a single individual
through time or on a group of samples from the same

site, random effects are assigned to each group of
observations. In the simplest case, a single random term
is used to describe consistent deviations between groups of
observations, for example due to innate differences
between the susceptibility of individuals in a longitudinal
study or innate differences in rates of exposure at different
sampling sites. Fitting such deviations between groups of
observations as random effects has the advantage that
relatively few parameters are required to describe the
variance of the distribution from which the random effects
are drawn, which loses relatively few degrees of freedom
from the model regardless of the number of different
groups of observations in the analysis. More-complex
formulations are also possible, with more than one random
effect assigned to each group of observations or to have
random effects interacting with each other or be nested
within each other.

The final part of a mixed model is the error term, which
defines the deviation of the response variable from that
predicted by either the fixed or random effects. In the
simplest case, the error term associated with each
observation is simply drawn from a normal distribution
implying that the correlations present within the data are
accounted for by the inclusion of random effects. However,
spatial and temporal data can also generate autocorrela-
tions between observations within groups, for example
where one observation depends on the last, or observations
exhibit correlations that depend on their temporal or
spatial proximity. Given a group of observations, and
where the errors within groups are correlated to each
other, these error terms can be drawn from a multivariate
normal distribution, with covariances that specify the
correlation between the errors associated with pairs of
observations. Some common forms of error structure
include: equicorrelated errors, where the measures within
a group are correlated equally to each other; autoregres-
sive errors in longitudinal data, where an error term
associated with an observation may be correlated to that of
the previous observation; and Markov errors, where the
correlations between errors show a GEOMETRIC DECREASE

with time or space (Box 1).
Another use of the random terms in mixed models,

which is of particular use in field data, is to ‘clean up’ noisy
data. Field data tends to have a large amount of random
noise associated with it, which can cloud the true effects of
fixed model terms. In the example of a study that uses a
large number of sites with multiple samples taken from
each site, fitting random effects for the sampling sites
controls for pseudoreplication within these sites and, in
doing so, cleans up the noise associated with variation
between these sites and allows the significance of factors
such as geographic location, climate, and so on, to be tested
within the fixed component of the model [12]. Similarly, in
a long-term study, the year of sampling could cause
variation over and above known seasonal effects,
accounted for in the fixed model. Moreover, including
these terms as random effects, rather than as fixed effects,
uses only a single degree of freedom. In our field example, if
we had 20 years, fitting the year in the fixed model might
have accounted for the variation but would have used 19
degrees of freedom instead of one; thus, accounting for
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random variance in this manner provides the model with
more explanatory power [6].

A common feature of parasitological data is that they
seldom exhibit a normal distribution (e.g. proportion data
from parasitaemia measures in malaria or aggregated
distributions of helminths between hosts) [13,14]. A
common method to deal with such data is provided by
GENERALIZED LINEAR MODELS (GLMS), which are extensions
of standard linear models and which can accommodate
various non-normal error distributions (reviewed in
Ref. [1]). However, GLMs assume that the data are
independent and so, as discussed previously, are not
suitable for all types of parasitological data. Box 1 shows
how non-normal distributions can be handled in mixed
models using GENERALIZED LINEAR MIXED MODELS

(GLMMS), which are analogous to GLMs but incorporate

random terms [15,16]. GLMMs therefore provide a power-
ful method to analyse parasitological data that does not
conform to a normal distribution and, at the same time,
controls for correlations between measures that arise from
grouped observations. For example, Diggle et al. [12] have
recently used this approach to model the prevalence of
malaria in children sampled from 65 villages in the
Gambia. They found a large amount of variation between
villages, which they were able to control for before testing
the significance of various fixed effects. This confirmed the
importance of age and bednet use for malaria prevalence
within villages but did not indicate support for satellite-
based measures, such as the greenness of surrounding
vegetation, to predict malaria prevalence between vil-
lages. Further analysis of the error component of the
model showed that variation in prevalence between

Box 1. A pocket guide to mixed models

Linear models (LMs) versus linear mixed models (LMMs)

Consider a linear model having a regression equation:

yi ¼ Xibþ ei ; ðEqn IÞ

where yi is an observation (i.e. the response variable) on the ith of n

individual hosts, Xi is a row vector of q explanatory variables, b is a

column vector of q coefficients and ei is the error component associated

with the ith individual. A mixed model is a straightforward extension of a

linear model to include random terms associated with groups of

observation [8]. For example, if pi observations are made on the ith

individual host to give a vector of observations y i ¼ ðyi1;…; yij ;…; yipi
ÞT;

a linear mixed model has the regression equation:

yi ¼ Xibþ Zibi þ ei ; ðEqn IIÞ

where the fixed component is defined by Xi ½pi £ q�;which is a matrix of q

explanatory variables for each observation and b, which is a column

vector of q fitted coefficients for these explanatory variables as before.

The random component of the model is defined by Zi ½pi £ r�; which is a

matrix of r explanatory variables for each observation and bi, which is a

column vector of r coefficients for these explanatory variables specific to

each group of observations. bi has a multivariate normal distribution,

bi , Npð0;BÞ; where B½r £ r� is the covariance matrix of bi over the

population of n individuals. In the simplest case, only the mean value of

each group of observations is assumed to vary as a random effect with

variance s2
b over the population of individual hosts, bi , Npð0;s

2
b IpÞ: In

more complex cases, bi can be constructed to be dependent on time or

other variables.

ei ½pi £ 1� denotes the errors remaining after fitting the fixed and

random components to the model. In the simplest case, these will be

distributed according to a normal distribution with variance s2
e ; eij ,

Nð0;s2
e Þ: However, other error structures are also possible. In particular,

errors might be autocorrelated through time, such that an observation

at time tj is correlated to the observation at time tk : The most obvious

treatment is to give the errors a Markov correlation structure, ei ,
Np ð0;Ei Þ; which decreases geometrically through time such that

Ejk ¼ s
2rltj2tk l; with 0 # r # 1: ðEqn IIIÞ

The correlations rltj2tk l clearly decrease (geometrically) as the separ-

ation lti 2 tk l increases.

The major hurdle to using mixed models is the difficulty in parameter

estimation. Reformulating Eqns I and II illustrates the problem. A linear

model can be given by:

yi , Nðxib;s
2
e Þ; ðEqn IVÞ

where s2
e is the variance of yi around the fixed component. A mixed

model is given by:

yi , Npðxib;Vi Þ ðEqn VÞ

Vi ¼ ZiBZT
i þ Ei

where Vi is the covariance matrix of yi around the fixed component.

Thus, estimation of s2
e in Eqn IV is a straightforward estimation of a

single parameter. However, estimation of Vi in Eqn V can involve

simultaneous estimation of many parameters in both B and Ei. Elegant,

analytical methods to estimate these parameters are not always

available and so brute force, computer-intensive methods such as

restricted maximum likelihood (REML), simplex algorithms and Monte

Carlo Markov Chain (MCMC) are often used instead [15,34,35].

Generalized linear models (GLMs) versus generalized linear

mixed models (GLMMs)
GLMs are used to model data that are not necessarily normally

distributed and take the general form:

E½yi � ¼ mi ðEqn VIÞ

gðmi Þ ¼ xib

where g(.) is a link function used to relate a vector of explanatory

variables, Xi, associated with observation yi to the expected value of yi ;

mi : Random effects can be added to GLMs to give the analogous mixed

models, GLMMs [15,16]:

E½yi lb� ¼ mi ðEqn VIIÞ

gðmi Þ ¼ xibþ zib

Mixed models of aggregation

Its worth noting the properties of a mixed model with Poisson-

distributed errors. Here, the standard GLM has the properties [36]:

E½yi � ¼ mi ðEqn VIIIÞ

varðyi Þ ¼ Eðmi Þ

Note that the variance is equal to the mean. The analogous GLMM has

the properties [15]:

E½yi lb� ¼ mi ðEqn IXÞ

varðyi Þ ¼ Eðmi Þ þ varðmi Þ

In this case the variance is greater than the mean, a characteristic of

aggregated parasite distributions. Note that as the variation between

hosts in mi increases so too does the level of aggregation. Where the mi

are distributed according to a gamma distribution with mean m ¼ Eðmi Þ

and index k, the yi will be distributed according to a negative binomial

distribution [36] with:

varðyi Þ ¼ mþ m2
=k ðEqn XÞ

where k is the overdispersion parameter and is inversely related to the

degree of aggregation [1].
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villages was spatially structured, possibly owing to some,
as-yet unidentified, environmental variable. As this
example shows, the flexibility of GLMMs allows several
hypotheses to be tested within one class of analysis.

Learning from your errors

It would be wrong to think that the only reason for using a
mixed model is to overcome the nuisance of pseudoreplica-
tion. It is true that including an extra error term in the
model allows unbiased estimates of the magnitude and
significance of the fixed effects to be made. However, the
random and error terms (i.e. the variation between
repeated measures or between individuals) are intrinsi-
cally interesting themselves. An important application is
in macroparasite infections, which often show a charac-
teristic aggregated distribution [13,17–20]. Epidemiologi-
cal models stress the potential consequences of this
aggregation to stabilize the dynamics of host and parasite
populations [18,21,22]. In this respect, understanding the
causes of aggregation is crucial to link processes of
infection at the individual level to the population-level
consequences of these processes [20,23,24]. Mixed models
might provide a useful technique to understand the
relative contribution of different processes to the observed
patterns of aggregation in field studies. For example,
consider a population of hosts infected with macropar-
asites and showing an aggregated distribution of para-
sites. One can model the causes of this aggregation by
analysing the rate at which parasites infect hosts. If all
hosts pick up infections at the same rate, and if infection
can be described by a stochastic, POISSON PROCESS, the
distribution of adult parasites between hosts will follow a
POISSON DISTRIBUTION (i.e. there will be no aggregation).
However, where different hosts will pick up infections
according to Poisson processes with different rates, the
distribution of parasites across all hosts will be aggregated
if the factors that underlie the infection rate combine
multiplicatively [2,13,18,23]; for example, if infection rate
is proportional to parasite fecundity £ larval survival [18].

Since mixed models allow the variation between hosts

to be modelled explicitly, the relative contribution of
different factors to this variation can also be tested. For
example, Elston et al. [25] used this approach to model the
factors affecting the aggregation of ticks (Ixodes ricinus) in
red grouse chicks (Lagopus lagopus scoticus). Using a
GLMM with Poisson errors [15], they analysed the
variation in tick infection intensity between individuals
and between broods, and found that more than a half of the
variation between randomly selected individuals could be
explained using random terms corresponding to temporal
(year) and spatial (altitude and location) effects.

Another area where the variation between hosts is of
particular interest is in animal breeding. Here, one wishes
to know how much of the variation between hosts is due to
genetic effects (e.g. variation in resistance) and environ-
mental effects (e.g. variation in exposure) [26]. Relatives,
which share some proportion of their genes, will be
correlated with each other for a particular trait, such as
parasite resistance. Incorporating different error terms
allows variation between hosts in their parasite burden to
be partitioned into genetic and environmental components
of variation [27]. For example, this approach has been used
to analyse Teladorsagia circumcincta infection in lambs
and shows that host genetics appears to have little
detectable effect on the number of nematodes in the gut
but a very strong effect on the size and fecundity of these
worms [28–30]. In related work, these analyses also show
a strong effect of host genetics on immunological measures
associated with reduced worm length and fecundity, such
as eosinophilia and IgA [31,32]. This approach highlights
the potential for mixed models as a tool to quantify the
genetic basis of different immunological pathways under-
lying resistance to parasite infection and to understand
the linkages between these pathways.

Applying mixed models

It is crucial that the high quality of data generated by
modern parasitological research is coupled with appro-
priate statistical analysis. Unfortunately, this is often not
the case and statistical methods are used that either do not

Table 1. Computer packages available for mixed modelsa

Package Supplier Mixed model

methods

Pros Cons

SAS SAS Institute Inc. (Cary, NC)

http://www.sas.com

Nested ANOVA,

LMM, GLMM

Widely used statistics package with

plenty of support and add-in

modules

Expensive

S-plus Insightful Inc. (Seattle, WA)

http://www.insightful.com

Nested ANOVA,

LMM, GLMM

Widely used statistics package with

plenty of support and add-in

modules; powerful object-orientated

programming

Expensive, fitting of

GLMMs is often slow

GenStat VSN International Ltd (Oxford, UK)

http://www.vsn-intl.com/genstat/

Nested ANOVA,

LMM, GLMM

Widely used statistics package with

plenty of support and add-in

modules; fast and robust fitting of

GLMMs

Expensive

R http://www.r-project.org/ Nested ANOVA,

LMM, GLMM

Free, uses most of the functions in

S-plus

Command-driven and

difficult to use

Stata http://www.stata.com Nested ANOVA,

LMM

Relatively cheap and easy to use No GLMM methods as

yet

BUGS MRC Biostatistics Unit (Cambridge, UK)

http://www.mrc-bsu.cam.ac.uk/bugs/

Nested ANOVA,

LMM, GLMM

Free, graphical construction of

models; virtually unlimited model

specification allowed

Very difficult to compare

models and select a

minimal model

aAbbreviations: ANOVA, analysis of variance; GLMM, generalized linear mixed model; LMM, linear mixed model.
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make full use of available data or that are inappropriate. A
literature survey of papers over a 12-month period in the
International Journal of Parasitology (October 2001 to
September 2002) shows the degree to which (in our view)
the appropriate statistics were used: 10% of all papers
published presented no statistics at all but in our view
should have done so; 4% of papers used GLMs but a further
25% would have benefited from their use; 2% of papers
used mixed models and a further 12% would have
benefited from their use. (We note that these findings
are likely to be general across the parasitology literature
and that it is not our aim to single out one journal for
particular opprobrium, indeed the journal works hard at
providing guidance on how to improve statistical analysis
in parasitology research publications [33].) Our brief
analysis demonstrates a clear need for parasitologists to
consider carefully whether the statistical techniques that
they use make the best of their data.

How easy is it then for a parasitologist to apply mixed
models to their data? Three points are relevant to
answering this question. First, you need to know what
you are modelling before you can think about how to model
it [6]. In this, there is no substitute for a good biological
knowledge of the system being modelled. For example,
what are the factors within the host or the external
environment that are likely to influence the observed
patterns of parasite abundance or prevalence? From these
questions, defined hypotheses can be made and an
appropriate statistical model constructed to test these
hypotheses. Second, understanding how to apply a mixed
model requires an understanding of its structure and how
it relates to the hypothesis being tested. Spending the
effort to understand the basic algebra, such as outlined in
Box 1, is probably unavoidable, but more complex topics,
such as how the computer derives the parameters of this
model, should not be required for most applications.
However, one does need to be aware that parameter
estimation of a large number of variables in complex
models might vary according to the precise procedures
used by different computer packages. Third, mixed models
are finding their way into widely available computer
packages (Table 1), making them more accessible to
laboratory and field parasitologists and less a preserve of
the dedicated statistician.

Given these points, applying mixed models remains
challenging but is now an achievable task for a scientist
trained in biology rather than one trained in statistics.
Hopefully, the application of mixed models will continue to
become easier as more biologists become familiar with
their use and as computer packages become more user
friendly.

Parasitologists have a good record in being among the
first to use new techniques in genetics, immunology and
biochemistry to help to explore the interaction between
hosts and parasites. Techniques in statistics, such as
mixed models, should be seen in this light and it is hoped
that they will bring significant advances in understanding
a wide range of micro- and macroparasite infections.
Mixed models offer a particularly promising method of
understanding the causes and consequences of variability
between hosts in their susceptibility or exposure to

infection. New statistical techniques that help to under-
stand these processes of parasite infection should form an
integral part of our attempts to understand and control the
diseases that parasites cause.

References

1 Wilson, K. and Grenfell, B.T. (1997) Generalized linear modelling for
parasitologists. Parasitol. Today 13, 33–38

2 Pacala, S.W. and Dobson, A.P. (1988) The relation between the number
of parasites and host age: population causes and maximum likelihood
estimation. Parasitology 96, 197–210

3 Paterson, S. (2001) The use of repeated measure linear modelling to
analyze longitudinal data from experimental parasite infections.
J. Parasitol. 87, 969–971

4 Wilson, K. et al. (1996) Analysis of aggregated parasite distributions: a
comparison of methods. Funct. Ecol. 10, 592–601

5 Zinsstag, J. et al. (2000) Effect of strategic gastrointestinal nematode
control on faecal egg count in traditional West African cattle. Vet. Res.
31, 259–266

6 Crawley, M.J. (1993) GLIM for Ecologists, Blackwell Scientific
Publications

7 Lindsey, J.K. (1999) Models for Repeated Measures, Oxford University
Press

8 Crowder, M.J. and Hand, D.J. (1990) Analysis of Repeated Measures,
Chapman & Hall

9 Grafen, A. and Hails, R.S. (2002) Modern Statistics for the Life
Sciences, Oxford University Press

10 Smith, J.A. et al. (1999) Heritable variation in resistance to gastro-
intestinal nematodes in an unmanaged mammal population. Proc.
R. Soc. Lond. B Biol. Sci. 266, 1283–1290

11 Sokal, R.R. and Rohlf, F.J. (1995) Biometry, Freeman
12 Diggle, P. et al. (2002) Childhood malaria in the Gambia: a case-study

in model-based geostatistics. J. R. Stat. Soc. 51, 493–506
13 Shaw, D.J. and Dobson, A.P. (1996) Patterns of macroparasitic

abundance and aggregation in wildlife populations: a quantitative
review. Parasitology 111, S111–S133

14 Hudson, P.J. and Dobson, A.P. (1995) Macroparasites: observed
patterns. In Ecology of Infectious Diseases in Natural Populations
(Grenfell, B.T. and Dobson, A.P., eds), pp. 144–176, Cambridge
University Press

15 McCulloch, C.E. and Searle, S.R. (2001) Generalized, Linear and
Mixed Models, Wiley

16 Breslow, N.E. and Clayton, D.G. (1993) Approximate inference in
generalised linear mixed models. J. Am. Stat. Assoc. 88, 9–25

17 Crompton, D.W.T. et al. (1984) Investigating over-dispersion; Mon-
iformis (Acanthocephala) and rats. Parasitology 88, 317–331

18 Anderson, R.M. and May, R.M. (1992) Infectious Diseases of Humans:
Dynamics and Control, Oxford University Press

19 Bliss, C.I. and Fisher, R.A. (1953) Fitting the negative binomial
distribution to biological data. Biometrics 9, 176–200

20 Wilson, K. et al. (2002) Heterogeneities in macroparasite infections:
patterns and processes. In The Ecology of Wildlife Diseases (Hudson,
P.J. et al., eds), pp. 6–44, Oxford University Press

21 Anderson, R.M. and May, R.M. (1978) Regulation and stability of host–
parasite population interactions; regulatory processes. J. Anim. Ecol.
47, 219–247

22 May, R.M. and Anderson, R.M. (1978) Regulation and stability of host–
parasite population interactions; destabilising processes. J. Anim.
Ecol. 47, 249–267

23 Grenfell, B.T. et al. (1995) Modelling patterns of parasite aggregation
in natural populations: trichostrongylid nematode–ruminant inter-
actions as a case study. Parasitology 111, S135–S151

24 Smith, G. et al. (1995) Macroparasite group report. In Ecology of
Infectious Diseases in Natural Populations (Grenfell, B.T. and Dobson,
A.P., eds), pp. 209–229, Cambridge University Press

25 Elston, D.A. et al. (2001) Analysis of aggregation, a worked example:
numbers of ticks on red grouse chicks. Parasitology 122, 563–569

26 Falconer, D.S. (1989) Introduction to Quantitative Genetics, Longman
Scientific and Technical

27 Tempelman, R.J. (1998) Generalized linear mixed models in dairy
cattle breeding. J. Dairy Sci. 81, 1428–1444

Review TRENDS in Parasitology Vol.19 No.8 August 2003374

http://parasites.trends.com

http://www.trends.com


28 Stear, M.J. et al. (1997) The genetic basis of resistance to Ostertagia
circumcincta in lambs. Vet. J. 154, 111–119

29 Stear, M.J. et al. (1995) Regulation of egg-production, worm burden,
worm length and worm fecundity by host responses in sheep infected
with Ostertagia circumcincta. Parasite Immunol. 17, 643–652

30 Stear, M.J. et al. (1998) The processes influencing the distribution of
parasitic nematodes among naturally infected lambs. Parasitology
117, 165–171

31 Strain, S.A.J. et al. (2002) The genetic control of IgA activity against
Teladorsagia circumcincta and its association with parasite resistance
in naturally infected sheep. Parasitology 124, 545–552

32 Stear, M.J. et al. (2002) Eosinophilia as a marker of resistance to
Teladorsagia circumcincta in Scottish Blackface lambs. Parasitology
124, 553–560

33 Morrison, D.A. (2002) How to improve statistical analysis in
parasitology research publications. Int. J. Parasitol. 32, 1065–1070

34 Gamerman, D. (1997) Markov Chain Monte Carlo, Chapman & Hall
35 Lagarias, J.C. et al. (1998) Convergence properties of the nelder-mead

simplex algorithm in low dimensions. SIAM J. Optimization 9,
112–147

36 McCullagh, P. and Nelder, J.A. (1989) Generalised Linear Models,
Chapman & Hall

Books on all types of parasites

Diseases and Disorders of Finfish in Cage Culture

Edited by P.T.K. Woo, D.W. Bruno and L.H.S. Lim, CABI Publishing, 2002

£85.00 (hbk) (384 pages) ISBN 0 85199 443 1

This is an authoritative book covering infectious and non-infectious

diseases and disorder of finfish in cage culture.

Plant Resistance to Parasitic Nematodes

Edited by J.L. Starr, R. Cook and J. Bridge, CABI Publishing, 2002

£49.95 (hbk) (288 pages) ISBN 0 85199 466 0

A timely book examining the important topic of host plant resistance to

nematodes.

The Parasites of Homo sapiens

Edited by R.W. ashford and W. Crewe, 2nd edn, Taylor and Francis, 2003

US$80.00 (hbk) (136 pages) ISBN 0 41527 688 8

This comprehensive book lists all the animals that are parasitic in or on the

human body.

Review TRENDS in Parasitology Vol.19 No.8 August 2003 375

http://parasites.trends.com

http://www.trends.com

	Mixed models: getting the best use of parasitological data
	Statistical models in parasitology
	Mixed models of parasite infection
	Learning from your errors
	Applying mixed models
	References


